Properties of Transposes, Determinants, and Inverses

So far, we've learned how to take transposes, determinants, and inverses of (some) matrices; in this handout, we state some of the properties of these operations and provide some illustrative examples.

Transposes

Recall that the transpose of an $m \times n$ matrix A is the $n \times m$ matrix A^{\top} whose first row is the first column of A, whose second row is the second column of A, etc.

Example 1: The transpose of $\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right)$ is $\left(\begin{array}{ll}1 & 4 \\ 2 & 5 \\ 3 & 6\end{array}\right)$.

Example 2: The transpose of $\left(\begin{array}{ll}1 & 4 \\ 2 & 5 \\ 3 & 6\end{array}\right)$ is $\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right)$.
The above examples show one of the important properties of transposes (see T1 below) which is shown here with some others:

T1. $\left(A^{\top}\right)^{\top}=A$

T2. $(A+B)^{\top}=A^{\top}+B^{\top}$

T3. $(A B)^{\top}=B^{\top} A^{\top} \quad$ Note: Notice the order swap on RHS!

Example 3: If $\mathrm{A}=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$ and $\mathrm{B}=\left(\begin{array}{ll}5 & 6 \\ 7 & 8\end{array}\right)$, then

$$
\mathrm{LHS}=(\mathrm{A}+\mathrm{B})^{\top}=\left(\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)+\left(\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right)\right)^{\top}=\left(\begin{array}{cc}
6 & 8 \\
10 & 12
\end{array}\right)^{\top}=\left(\begin{array}{ll}
6 & 10 \\
8 & 12
\end{array}\right)
$$

while

$$
\text { RHS }=A^{\top}+B^{\top}=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)^{\top}+\left(\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right)^{\top}=\left(\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right)+\left(\begin{array}{ll}
5 & 7 \\
6 & 8
\end{array}\right)=\left(\begin{array}{ll}
6 & 10 \\
8 & 12
\end{array}\right)
$$

so $\mathrm{LHS}=$ RHS.

Example 4: If A and B are as in Example 3, then $\mathrm{LHS}=\mathrm{RHS}=\left(\begin{array}{ll}19 & 43 \\ 22 & 50\end{array}\right)$.

Determinants

Recall that $\operatorname{det}(A)$ is a real number which is defined if and only if A is a square matrix and that- to compute $\operatorname{det}(\mathrm{A})$-it suffices to do "cofactor expansion" along any row or column of A. See the lecture notes if you need a refresher on how to do this!

There are two main properties of determinants that you should know.

D1. $\operatorname{det}\left(A^{\top}\right)=\operatorname{det}(A)$

D2. $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$

Example 5: If A is as in Example 3, then

$$
\mathrm{LHS}=\operatorname{det}\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)^{\top}=\operatorname{det}\left(\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right)=4-6=-2
$$

while

$$
\mathrm{RHS}=\operatorname{det}\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)=4-6=-2
$$

so $\mathrm{LHS}=$ RHS.

Example 6: If $\mathrm{A}=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$ and $\mathrm{B}=\left(\begin{array}{ll}5 & 6 \\ 7 & 8\end{array}\right)$ as in Example 3, then $\mathrm{AB}=\left(\begin{array}{ll}19 & 22 \\ 43 & 50\end{array}\right)$ and so

$$
\mathrm{LHS}=\operatorname{det}(\mathrm{AB})=\operatorname{det}\left(\begin{array}{ll}
19 & 22 \\
43 & 50
\end{array}\right)=19(50)=43(22)=4
$$

while

$$
\text { RHS }=\operatorname{det}(A) \operatorname{det}(B)=\operatorname{det}\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right) \cdot \operatorname{det}\left(\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right)=-2 \cdot-2=4
$$

Thus, LHS $=$ RHS.

Inverses

With determinants in tow, we're able to define and talk about matrix inverses!
Recall that the inverse of an $n \times n$ matrix A is an $n \times n$ matrix A^{-1} for which $\mathrm{AA}^{-1}=\mathrm{I}_{n}=\mathrm{A}^{-1} \mathrm{~A}$ where I_{n} is the $n \times \overline{n \text { identity matrix. }}$

As we learned in class, A has an inverse if and only if $\operatorname{det}(A) \neq 0$ and-when it exists-you can find A^{-1} by forming the augmented matrix $\left(\mathrm{A} \mid \mathrm{I}_{n}\right)$ and putting the "A part" into RREF. The result is guaranteed to be the augmented matrix

$$
\left(\mathrm{I}_{n} \mid \mathrm{A}^{-1}\right) .
$$

In a future handout, we'll learn a whole lot more about matrix inverses; until then, here are some properties you should know!

I1. $\left(\mathrm{A}^{-1}\right)^{-1}=\mathrm{A}$

I2. $(A B)^{-1}=B^{-1} A^{-1}$. Note: Notice the order swap on RHS!

I3. $\left(A^{\top}\right)^{-1}=\left(A^{-1}\right)^{\top}$.

Example 7: If A is as in Example 3, then $A^{-1}=\left(\begin{array}{cc}-2 & 1 \\ \frac{3}{2} & -\frac{1}{2}\end{array}\right)$ and the inverse of A^{-1} is precisely A. You should verify this!

Example 8: If $\mathrm{A}=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$ and $\mathrm{B}=\left(\begin{array}{ll}5 & 6 \\ 7 & 8\end{array}\right)$ as above, then $\mathrm{AB}=\left(\begin{array}{cc}19 & 22 \\ 43 & 50\end{array}\right)$, $\mathrm{A}^{-1}=\left(\begin{array}{cc}-2 & 1 \\ \frac{3}{2} & -\frac{1}{2}\end{array}\right)$, and $B^{-1}=\left(\begin{array}{cc}-4 & 3 \\ \frac{7}{2} & -\frac{5}{2}\end{array}\right)$. Thus,

$$
\mathrm{LHS}=(\mathrm{AB})^{-1}=\operatorname{det}\left(\begin{array}{ll}
19 & 22 \\
43 & 50
\end{array}\right)^{-1}=\left(\begin{array}{cc}
\frac{25}{2} & -\frac{11}{2} \\
-\frac{43}{4} & \frac{19}{4}
\end{array}\right)
$$

while

$$
\text { RHS }=\mathrm{B}^{-1} \mathrm{~A}^{-1}=\left(\begin{array}{cc}
-4 & 3 \\
\frac{7}{2} & -\frac{5}{2}
\end{array}\right)\left(\begin{array}{cc}
-2 & 1 \\
\frac{3}{2} & -\frac{1}{2}
\end{array}\right)=\left(\begin{array}{cc}
\frac{25}{2} & -\frac{11}{2} \\
-\frac{43}{4} & \frac{19}{4}
\end{array}\right),
$$

and so LHS $=$ RHS. You should verify this, too!

Example 9: If A is as in Example 3, then $\mathrm{A}^{\top}=\left(\begin{array}{ll}1 & 3 \\ 2 & 4\end{array}\right)$ has inverse $\operatorname{LHS}=\left(\begin{array}{cc}-2 & \frac{3}{2} \\ 1 & -\frac{1}{2}\end{array}\right)$. On the other hand, $A^{-1}=\left(\begin{array}{cc}-2 & 1 \\ \frac{3}{2} & -\frac{1}{2}\end{array}\right)$ (see Example 7) and so

$$
\text { RHS }=\left(A^{-1}\right)^{\top}=\left(\begin{array}{cc}
-2 & 1 \\
\frac{3}{2} & -\frac{1}{2}
\end{array}\right)^{\top}=\left(\begin{array}{cc}
-2 & \frac{3}{2} \\
1 & -\frac{1}{2}
\end{array}\right) .
$$

Thus, LHS $=$ RHS. Verify everything!

