Name: \qquad

MAS 3105 - Matrices I

Directions: Split into groups and (attempt to) answer each of the following questions with your group members. Don't worry about questions you are unable to answer!

In what follows, let
$A=\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)$
$B=\left(\begin{array}{ccc}1 & -1 & 3 \\ 0 & 1 & 1 \\ -2 & 1 & 4\end{array}\right)$
$C=\left(\begin{array}{ccc}1 & 1 & 0 \\ -1 & -3 & 3\end{array}\right)$
$\mathrm{D}=\left(\begin{array}{cc}2 & 4 \\ -1 & 1 \\ 0 & 0\end{array}\right)$
$\mathbf{I}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
and let

$$
\mathbf{u}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \quad \mathbf{v}=\binom{2}{1} \quad \mathbf{w}=\left(\begin{array}{c}
1 \\
-2 \\
-2
\end{array}\right)
$$

1. Determine whether each of the following operations is possible. If it is possible, do it; if not, state why it's impossible.
(a) $A+B$
(b) $\mathrm{B}+\mathrm{I}$
(c) $A B \quad$ Hint: This is the matrix product of A and B.
(d) $C D$
(e) $D C$
(f) Bl
(g) $A u$
(h) $2 \mathbf{v}$
(i) $\mathrm{B}(\mathbf{u}+\mathbf{w})$
(j) $\mathrm{Bu}+\mathrm{Bw}$
(k) uw
(l) $\mathbf{u} \cdot \mathbf{w}$ Hint: This is the dot product of \mathbf{u} and \mathbf{w}.
(m) $\operatorname{det} B \quad$ Hint: This is the determinant of B.
(n) $C^{T} \quad$ Hint: This is the transpose of C.
2. (a) Put the matrix B in row echelon form.
(b) Put the matrix B in reduced row echelon form.
(c) Using the above, find the inverse of the matrix B if it exists. Hint: Using part (m) from the first problem, you should be able to tell whether it exists or not without doing any work.
(d) Using part (c), solve the vector equation $B \mathbf{x}=\mathbf{u}+\mathbf{w}$ for \mathbf{x}. Hint: B, \mathbf{u}, and \mathbf{w} are all known/given above.
