Check Your Understanding: Linear Combinations, Spans, and Solving Linear Systems

What's in a name? that which we call a rose By any other word would smell as sweet...

William Shakespeare

As you've probably noticed by now, linear algebra uses a lot of *words*—words and terminology and definitions and notation—and in lots of cases, you can phrase a single concept in lots of different ways.

Such is the case with linear combinations.

Here are a bunch of ways to say the same (very important!!) thing.

Don't be surprised if we revisit this list later to make more additions!

Sample problems.

Throughout, let
$$\mathbf{v} = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$$
, $\mathbf{u}_1 = \begin{pmatrix} -1 \\ 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$, $\mathbf{u}_2 = \begin{pmatrix} 0 \\ 2 \\ -2 \\ 1 \\ 1 \end{pmatrix}$, $\mathbf{u}_3 = \begin{pmatrix} 2 \\ 1 \\ 3 \\ 4 \end{pmatrix}$, $\mathbf{u}_4 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$, and $\mathbf{u}_5 = \begin{pmatrix} 2 \\ 2 \\ 2 \\ 2 \\ 2 \end{pmatrix}$.

- 1. Can v be written as a linear combination of the vectors \mathbf{u}_1 , \mathbf{u}_2 , \mathbf{u}_3 , \mathbf{u}_4 , \mathbf{u}_5 ?
- 2. Find real numbers x_1 , x_2 , x_3 , x_4 , x_5 so that $\mathbf{v} = x_1\mathbf{u}_1 + x_2\mathbf{u}_2 + x_3\mathbf{u}_3 + x_4\mathbf{u}_4 + x_5\mathbf{u}_5$ or state that no such numbers exist.
- 3. True or False: **v** is an element of span $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4, \mathbf{u}_5\}$. How do you know?
- 4. For the following linear system, determine whether it is (a) consistent with a unique solution,(b) consistent with non-unique solutions, or (c) inconsistent:

$-x_1$			+	$2x_3$	+	x_4	+	$2x_5$	=	1
x_1	+	$2x_2$	+	x_3	+	x_4	+	$2x_5$	=	2
$2x_1$	_	$2x_2$	+	$3x_3$	+	x_4	+	$2x_5$	=	3
$3x_1$	+	x_2	+	$4x_3$	+	x_4	+	$2x_5$	=	4

If it is consistent, write its solution(s).

5. Let A be the 4×5 matrix whose columns are the vectors \mathbf{u}_1 , \mathbf{u}_2 , \mathbf{u}_3 , \mathbf{u}_4 , and \mathbf{u}_5 . Find a vector \mathbf{x} such that $A\mathbf{x} = \mathbf{v}$.