Check Your Understanding: Linear Combinations, Spans, and Solving Linear Systems

What's in a name? that which we call a rose By any other word would smell as sweet...

William Shakespeare

As you've probably noticed by now, linear algebra uses a lot of words-words and terminology and definitions and notation - and in lots of cases, you can phrase a single concept in lots of different ways.

Such is the case with linear combinations.
Here are a bunch of ways to say the same (very important!!) thing.
\qquad
"b can be written as a linear combination of the vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n} . "$
means the same as
"There exist real numbers x_{1}, \ldots, x_{n} such that $\mathbf{b}=x_{1} \mathbf{a}_{1}+\cdots+x_{n} \mathbf{a}_{n} . "$
means the same as
" \mathbf{b} is an element of $\operatorname{span}\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\}$."
means the same as
"The linear system with augmented matrix $\left(\mathbf{a}_{1}|\cdots| \mathbf{a}_{n} \mid \mathbf{b}\right)$ has some solution."
means the same as
"The matrix equation $\mathbf{A} \mathbf{x}=\mathbf{b}$ has some solution, where $\mathbf{x}=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right)$ for some real numbers x_{1}, \ldots, x_{n}."

Don't be surprised if we revisit this list later to make more additions!

Sample problems.

Throughout, let $\mathbf{v}=\left(\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right), \mathbf{u}_{1}=\left(\begin{array}{c}-1 \\ 1 \\ 2 \\ 3\end{array}\right), \mathbf{u}_{2}=\left(\begin{array}{c}0 \\ 2 \\ -2 \\ 1\end{array}\right), \mathbf{u}_{3}=\left(\begin{array}{l}2 \\ 1 \\ 3 \\ 4\end{array}\right), \mathbf{u}_{4}=\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right)$, and $\mathbf{u}_{5}=\left(\begin{array}{l}2 \\ 2 \\ 2 \\ 2\end{array}\right)$.

1. Can \mathbf{v} be written as a linear combination of the vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}, \mathbf{u}_{5}$?
2. Find real numbers $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ so that $\mathbf{v}=x_{1} \mathbf{u}_{1}+x_{2} \mathbf{u}_{2}+x_{3} \mathbf{u}_{3}+x_{4} \mathbf{u}_{4}+x_{5} \mathbf{u}_{5}$ or state that no such numbers exist.
3. True or False: \mathbf{v} is an element of $\operatorname{span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}, \mathbf{u}_{5}\right\}$. How do you know?
4. For the following linear system, determine whether it is (a) consistent with a unique solution, (b) consistent with non-unique solutions, or (c) inconsistent:

$$
\begin{gathered}
-x_{1} \\
x_{1}+2 x_{3}+x_{4}+2 x_{5}=1 \\
2 x_{1}-2 x_{2}+3 x_{3}+x_{4}+2 x_{5}=2 \\
3 x_{1}+2 x_{5}=3 \\
x_{2}+4 x_{3}+x_{4}+2 x_{5}=4
\end{gathered}
$$

If it is consistent, write its solution(s).
5. Let A be the 4×5 matrix whose columns are the vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}$, and \mathbf{u}_{5}. Find a vector \mathbf{x} such that $A \mathbf{x}=\mathbf{v}$.

