Exam 3

MAS 3105—Applied Linear Algebra, Spring 2018

(CLEARLY!) PRINT NAME: _____

Read all of what follows carefully before starting!

- 1. This test has 7 problems and is worth 110 points. Please be sure you have all the questions before beginning!
- 2. The exam is **closed-note** and **closed-book**. You may **not** consult with other students, and **no** calculators may be used!
- 3. Show all work clearly in order to receive full credit. No work = no credit! (unless otherwise stated)
- 4. You may use appropriate results from class and/or from the textbook <u>as long as you fully and correctly</u> state the result and where it came from.
 - $\circ~$ If you use a result/theorem, you have to state which result you're using and explain why you're able to use it!
- 5. You **do not** need to simplify results, unless otherwise stated.
- 6. There is scratch paper at the end of the exam; you may also use the backs of pages or get more scratch paper from me.
- 7. Some questions are multiple choice.
 - $\circ~$ Indicate correct answers by circling them and/or drawing a box around them.
 - More than one choice may be a correct answer for a question; if so, circle all correct answers!
 - \circ There may be correct answers which aren't listed; in this case, <u>only</u> focus on the choices provided!
- 8. The notation I_n <u>always</u> denotes the $n \times n$ identity matrix. For example, $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.
- 9. Script capital letters like \mathcal{B} , \mathcal{C} , etc. <u>always</u> denote bases of some vector space.

Question	1 (10)	2 (10)	3 (10)	4 (23)	5 (15)	6 (30)	7 (12)	Total (110)
Points								

Do not write in these boxes! If you do, you get 0 points for those questions!

1. (10 pts) How many vectors are in the column space of the matrix $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$?

(ii). One (v). Infinitely many

(iii). Two

(vi). None of the above

2. (10 pts) How many vectors are in the null space of the matrix $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$?

(i). Zero (iv). Three

(ii). One (v). Infinitely many

(iii). Two (vi). None of the above

- 3. (10 pts) Which of the following scenarios is possible? There may be more than one!
 - (i). A is 3×5 ; row(A) is 3-dimensional; nul(A) is 3-dimensional
 - (ii). A is 3×5 ; rank(A) = 3; nullity(A) = 2
 - (iii). A is 3×5 ; col(A) is 4-dimensional; nullity(A) = 1
 - (iv). A is 3×5 ; rank $(A^T) = 3$; nullity(A) = 2
 - (v). A is 5×1 ; rank $(A^{\mathsf{T}}) = 3$; nullity $(A^{\mathsf{T}}) = 2$
 - (vi). A is 5×5 ; rank(A) = \mathbb{R}^3 ; nul(A) is 2-dimensional
 - (vii). All of the above
 - (viii). None of the above

4. Let
$$A = \begin{pmatrix} 1 & 2 & 3 & 0 \\ 1 & 1 & 1 & 2 \\ -1 & 1 & 3 & 3 \end{pmatrix}$$
. Note: RREF(A) = $\begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$.

(a) (6 pts) Find a basis for the column space col(A).

(b) (6 pts) Find a basis for the row space row(A).

Question 4(c) is on the next page

(c) (6 pts) Find a basis for the null space nul(A).

(d) (5 pts) State the "rank-nullity theorem" and confirm that it holds for A. Justify your claim.

5. Let $T : \mathbb{R}^4 \to \mathbb{R}^2$ be a linear transformation, let A denote the canonical matrix of T, and suppose

$$RREF(\mathsf{A}) = \begin{pmatrix} 1 & 0 & 3 & 4 \\ 0 & 1 & -1 & 1 \end{pmatrix}.$$

(a) (6 pts) Show that the kernel ker(T) is a subspace of \mathbb{R}^4 by explicitly verifying the three subspace axioms.

Hint: At some point, you should let $\mathbf{u}, \mathbf{v} \in \ker(\mathbf{T})$ and let $c, d \in \mathbb{R}$ be scalars and confirm the axioms accordingly.

SOLUTION:

Question 5(b) is on the next page

(b) (5 pts) Find a basis for the kernel ker(T).

(c) (4 pts) Conclude that range(T) is a 2-dimensional subspace of ℝ².
Hint: You can't find range(T) explicitly, so don't waste your time trying!

6. Let
$$\mathcal{B} = \left\{ \mathbf{b}_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \mathbf{b}_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \right\}$$
 and $\mathcal{C} = \left\{ \mathbf{c}_1 = \begin{pmatrix} -1 \\ 7 \end{pmatrix}, \mathbf{c}_2 = \begin{pmatrix} -2 \\ 0 \end{pmatrix} \right\}$ be bases for \mathbb{R}^2 .

(a) (4 pts) Find the coordinate change matrices $\mathsf{A}_{\mathcal{B}}$ and $\mathsf{A}_{\mathcal{C}}.$

(b) (6 pts) Let
$$\mathbf{x} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
. Compute $[\mathbf{x}]_{\mathcal{B}}$ and $[\mathbf{x}]_{\mathcal{C}}$

Question 6(c) is on the next page

(c) $(10 \ pts)$ Using <u>only</u> the definition (no commutative diagrams, etc.), find the coordinate-change matrix $A_{\mathcal{B}\to\mathcal{C}}$.

SOLUTION:

Question 6(d) is on the next page

(d) (5 *pts*) Prove that $A_{\mathcal{B}\to\mathcal{C}} = A_{\mathcal{C}}^{-1}A_{\mathcal{B}}$.

(e) (5 *pts*) Using any method we've learned, find the coordinate-change matrix $A_{\mathcal{C} \to \mathcal{B}}$.

- 7. (1 pt ea.) Indicate whether each of the following questions is True or False by writing the words "True" or "False". No justification is required!
 - (a) For every matrix A, the linearly independent rows of the matrix RREF(A) are a basis for row(A).
 - (b) For every matrix A, the linearly independent columns of the matrix RREF(A) are a basis for col(A).
 - (c) If \mathcal{B} and \mathcal{C} are two bases for a vector space V, then the map sending \mathcal{B} -coordinates to \mathcal{C} -coordinates is a linear transformation $V \to V$.
 - (d) If \mathcal{B} and \mathcal{C} are two bases for a vector space V, then det $(A_{\mathcal{B}\to\mathcal{C}})$ may equal 0.
 - (e) If \mathcal{B} and \mathcal{C} are two bases for a vector space V, then the map sending \mathcal{B} -coordinates to \mathcal{C} -coordinates is injective.
 - (f) The transformation $T(\mathbf{x}) = A\mathbf{x}$ is surjective if and only if codomain(T) = col(A).
 - (g) The matrix A is invertible if and only if the kernel of the transformation $T(\mathbf{x}) = A\mathbf{x}$ is a 0-dimensional subspace of domain(T).

Question 7(h) is on the next page

- (h) If H is a subspace of \mathbb{R}^4 , then there is a 4×4 matrix A such that H = col(A).
- (i) If A is $m \times n$ and dim(row(A)) = m, then the linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is one-to-one.
- (j) If A is $m \times n$ and the linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is onto, then rank(A) = m.
- (k) If $\mathcal{B} = {\mathbf{b}_1, \ldots, \mathbf{b}_n}$ is a basis for a vector space V, then removing \mathbf{b}_1 from \mathcal{B} will leave a set of vectors which spans V.
- (l) If $\mathcal{B} = {\mathbf{b}_1, \ldots, \mathbf{b}_n}$ is a basis for a vector space V, then removing \mathbf{b}_1 from \mathcal{B} will leave a set of vectors which is linearly independent.