Exam 3

MAS 3105-Applied Linear Algebra, Spring 2018

\qquad

Read all of what follows carefully before starting!

1. This test has $\mathbf{7}$ problems and is worth $\mathbf{1 1 0}$ points. Please be sure you have all the questions before beginning!
2. The exam is closed-note and closed-book. You may not consult with other students, and no calculators may be used!
3. Show all work clearly in order to receive full credit. No work $=$ no credit! (unless otherwise stated)
4. You may use appropriate results from class and/or from the textbook as long as you fully and correctly state the result and where it came from.

- If you use a result/theorem, you have to state which result you're using and explain why you're able to use it!

5. You do not need to simplify results, unless otherwise stated.
6. There is scratch paper at the end of the exam; you may also use the backs of pages or get more scratch paper from me.
7. Some questions are multiple choice.

- Indicate correct answers by circling them and/or drawing a box around them.
- More than one choice may be a correct answer for a question; if so, circle all correct answers!
- There may be correct answers which aren't listed; in this case, only focus on the choices provided!

8. The notation I_{n} always denotes the $n \times n$ identity matrix. For example, $I_{3}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$.
9. Script capital letters like \mathcal{B}, \mathcal{C}, etc. always denote bases of some vector space.

Question	$1_{(10)}$	$2_{(10)}$	$3(10)$	$4_{(23)}$	$5(15)$	$6_{(30)}$	$7_{(12)}$	Total (110)
Points								

Do not write in these boxes! If you do, you get 0 points for those questions!

1. (10 pts) How many vectors are in the column space of the matrix $A=\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$?
(i). Zero
(iv). Three
(ii). One
(v). Infinitely many
(iii). Two
(vi). None of the above
2. (10 pts) How many vectors are in the null space of the matrix $A=\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$?
(i). Zero
(iv). Three
(ii). One
(v). Infinitely many
(iii). Two
(vi). None of the above
3. (10 pts) Which of the following scenarios is possible? There may be more than one!
(i). A is 3×5;
$\operatorname{row}(\mathrm{A})$ is 3-dimensional;
$\operatorname{nul}(\mathrm{A})$ is 3 -dimensional
(ii). A is 3×5;
$\operatorname{rank}(A)=3$;
nullity $(A)=2$
(iii). A is 3×5;
$\operatorname{col}(\mathrm{A})$ is 4 -dimensional;
$\operatorname{nullity}(A)=1$
(iv). A is 3×5;
$\operatorname{rank}\left(\mathrm{A}^{\top}\right)=3$;
$\operatorname{nullity}(A)=2$
(v). A is 5×1;
$\operatorname{rank}\left(\mathrm{A}^{\mathrm{T}}\right)=3$;
$\operatorname{nullity}\left(A^{\top}\right)=2$
(vi). A is 5×5;
$\operatorname{rank}(A)=\mathbb{R}^{3}$;
$\operatorname{nul}(A)$ is 2-dimensional
(vii). All of the above
(viii). None of the above
4. Let $\mathrm{A}=\left(\begin{array}{cccc}1 & 2 & 3 & 0 \\ 1 & 1 & 1 & 2 \\ -1 & 1 & 3 & 3\end{array}\right)$. Note: $\operatorname{RREF}(\mathrm{A})=\left(\begin{array}{cccc}1 & 0 & -1 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$.
(a) (6 pts) Find a basis for the column space $\operatorname{col}(\mathrm{A})$.
(b) (6 pts) Find a basis for the row space $\operatorname{row}(\mathrm{A})$.

Question $4(\mathrm{c})$ is on the next page

Page 4
(c) $(6$ pts $)$ Find a basis for the null space $\operatorname{nul}(\mathrm{A})$.
(d) (5 pts) State the "rank-nullity theorem" and confirm that it holds for A. Justify your claim.
5. Let $\mathrm{T}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ be a linear transformation, let A denote the canonical matrix of T , and suppose

$$
\operatorname{RREF}(A)=\left(\begin{array}{cccc}
1 & 0 & 3 & 4 \\
0 & 1 & -1 & 1
\end{array}\right)
$$

(a) (6 pts) Show that the kernel $\operatorname{ker}(T)$ is a subspace of \mathbb{R}^{4} by explicitly verifying the three subspace axioms.
Hint: At some point, you should let $\mathbf{u}, \mathbf{v} \in \operatorname{ker}(\mathrm{T})$ and let $c, d \in \mathbb{R}$ be scalars and confirm the axioms accordingly.

Solution:

(b) (5 pts) Find a basis for the kernel $\operatorname{ker}(\mathrm{T})$.
(c) (4 pts) Conclude that range (T) is a 2-dimensional subspace of \mathbb{R}^{2}.

Hint: You can't find range(T) explicitly, so don't waste your time trying!
6. Let $\mathcal{B}=\left\{\mathbf{b}_{1}=\binom{1}{2}, \mathbf{b}_{2}=\binom{2}{1}\right\}$ and $\mathcal{C}=\left\{\mathbf{c}_{1}=\binom{-1}{7}, \mathbf{c}_{2}=\binom{-2}{0}\right\}$ be bases for \mathbb{R}^{2}.
(a) (4 pts) Find the coordinate change matrices $\mathrm{A}_{\mathcal{B}}$ and $\mathrm{A}_{\mathcal{C}}$.
(b) (6 pts) Let $\mathbf{x}=\binom{0}{1}$. Compute $[\mathbf{x}]_{\mathcal{B}}$ and $[\mathbf{x}]_{\mathcal{C}}$
(c) (10 pts) Using only the definition (no commutative diagrams, etc.), find the coordinate-change matrix $\mathrm{A}_{\mathcal{B} \rightarrow \mathcal{C}}$.

Solution:

Question 6(d) is on the next page

Page 9
(d) (5 pts) Prove that $\mathrm{A}_{\mathcal{B} \rightarrow \mathcal{C}}=\mathrm{A}_{\mathcal{C}}^{-1} \mathrm{~A}_{\mathcal{B}}$.
(e) (5 pts) Using any method we've learned, find the coordinate-change matrix $\mathrm{A}_{\mathcal{C} \rightarrow \mathcal{B}}$.
7. (1 pt ea.) Indicate whether each of the following questions is True or False by writing the words "True" or "False". No justification is required!
(a) For every matrix A, the linearly independent rows of the matrix $\operatorname{RREF}(A)$ are a basis for $\operatorname{row}(A)$.
(b) For every matrix A, the linearly independent columns of the matrix $\operatorname{RREF}(A)$ are a basis for $\operatorname{col}(A)$.
(c) If \mathcal{B} and \mathcal{C} are two bases for a vector space V, then the map sending \mathcal{B}-coordinates to \mathcal{C}-coordinates is a linear transformation $V \rightarrow V$.
(d) If \mathcal{B} and \mathcal{C} are two bases for a vector space V, then $\operatorname{det}\left(\mathrm{A}_{\mathcal{B} \rightarrow \mathcal{C}}\right)$ may equal 0 .
(e) If \mathcal{B} and \mathcal{C} are two bases for a vector space V, then the map sending \mathcal{B}-coordinates to \mathcal{C}-coordinates is injective.
(f) The transformation $T(x)=A x$ is surjective if and only if $\operatorname{codomain}(T)=\operatorname{col}(A)$.
(g) The matrix A is invertible if and only if the kernel of the transformation $T(\mathbf{x})=\mathrm{Ax}$ is a 0 -dimensional subspace of domain(T$)$.

Question $7(\mathrm{~h})$ is on the next page

(h) If H is a subspace of \mathbb{R}^{4}, then there is a 4×4 matrix A such that $H=\operatorname{col}(\mathrm{A})$.
(i) If A is $m \times n$ and $\operatorname{dim}(\operatorname{row}(\mathrm{A}))=m$, then the linear transformation $\mathbf{x} \mapsto \mathrm{A} \mathbf{x}$ is one-to-one.
(j) If A is $m \times n$ and the linear transformation $\mathbf{x} \mapsto \mathrm{A} \mathbf{x}$ is onto, then $\operatorname{rank}(\mathrm{A})=m$.
(k) If $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ is a basis for a vector space V, then removing \mathbf{b}_{1} from \mathcal{B} will leave a set of vectors which spans V.
(l) If $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ is a basis for a vector space V, then removing \mathbf{b}_{1} from \mathcal{B} will leave a set of vectors which is linearly independent.

