1. Rewrite each of the following regions in terms of polar coordinates.
(i) $R_{1}=\left\{(x, y): 1 \leq x^{2}+y^{2} \leq 9\right.$ and $\left.0 \leq y \leq-x\right\}$
(ii) $R_{2}=$ the region in the first quadrant bounded by the circles $x^{2}+y^{2}=4$ and $x^{2}+y^{2}=2 y$.
(iii) $R_{3}=$ the region bounded between the circle $x^{2}+y^{2}=1$, the curve defined implicitly as

$$
5 \sqrt{x^{2}+y^{2}}=10+\sin \left(10 \arctan \left(\frac{y}{x}\right)\right)
$$

and the lines $y=x$ in quadrant 1 and $y=\sqrt{3} x$ in quadrant 3 (see below).

Hints:

(a) Use $x=r \cos (\theta)$ and $y=r \sin (\theta)$ to solve for $\tan (\theta)$ and then use what you know about $\tan (\theta)$ to figure out what angles the two lines determine;
(b) figure out the $r=\ldots$ form of the (scary-looking) implicit curve by first doing direct substitution of x and y, and then solving for r (via lots of algebra); and
(c) Do your work on scratch paper!

2. Use polar coordinates to find the volume inside both the cylinder $x^{2}+y^{2}=4$ and the ellipsoid $4 x^{2}+$ $4 y^{2}+z^{2}=64$ (see below).

Solution:
3. Find the surface area of the part of the surface $z=1+2 x+3 y^{2}$ that lies above the triangle with vertices $(0,0),(0,1)$, and $(3,1)$.

Solution:

4. Evaluate

$$
\iiint_{E} 3 x y d V
$$

where E is the region under the plane $z=1+x+y$ and above the region in the $x y$-plane bounded by the curves $y=\sqrt{x}, y=0$, and $x=1$.

Solution:
5. Use cylindrical coordinates to evaluate

$$
\iiint_{E} x^{2} d V
$$

where E is the solid that lies within the cylinder $x^{2}+y^{2}=1$, above the plane $z=1$, and below the cone $z^{2}=3 x^{2}+3 y^{2}$.

Solution:

