Note: A function f can have $\pm \infty$ as a limit, but if f approaches $+\infty$ along one curve/path and approaches $-\infty$ along another, the overall limit fails to exist.

1. Show that each of the following limits fails to exist.
(a) $\lim _{(x, y) \rightarrow(0,0)} \frac{2 x^{2} y}{x^{2}-y^{2}}$
(b) $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y}$
(c) $\lim _{(x, y) \rightarrow(0,0)} \frac{e^{x+y}}{x^{2}-y^{2}}$
2. Let c be a constant and define $f(x, y)$ as follows:

$$
f(x, y)=\left\{\begin{array}{rrr}
\frac{\sin x y}{x y} & \text { if } & (x, y) \neq(0,0) \\
c & \text { if } & (x, y)=(0,0)
\end{array}\right.
$$

Find the value c so that f is continuous on \mathbb{R}^{2}.
3. Use the limit definition of partial derivatives to find f_{x} and f_{y} for $f(x)=3 x^{2}+x y-y^{2}$.
4. Define f, g, and h as follows:

$$
\begin{gathered}
f(x, y)=e^{x+y} \sin x \quad g(x, y, z)=x \cos (y \cos z), \\
h(w, x, y, z)=e^{w}+e^{x}+e^{y}+e^{z}+z e^{w\left(x y+y^{2}\right)-x}
\end{gathered}
$$

Find each of the indicated partial derivatives. Note: If possible, it may be beneficial to change the order of the partials!
(a) $f_{x y}$.
(b) $g_{y x z x}$
(c) $h_{w z}$
(d) $h_{x y w z x y x w z}$
5. Let $f(x, y)=2 x-3 x^{2} y+y^{4}$.
(a) Is f differentiable at the point $(1,4)$? Why or why not?
(b) Find the equation of the tangent plane to the surface $z=f(x, y)$ at the point $(1,1,0)$.
(c) Find Δz and $d z$ (as functions), where

$$
\Delta z=f(a+\Delta x, b+\Delta y)-f(a, b) \quad \text { and } \quad d z=\frac{\partial z}{\partial x} d x+\frac{\partial z}{\partial y} d y
$$

(d) Using part (c), compare the values of Δz and $d z$ if x changes from 1 to 0.94 and y changes from 1 to 1.08 .

