Throughout, let
$$u = \langle 2, 3, 1 \rangle$$
, $v = \langle -1, -1, -2 \rangle$, and $w = \langle 0, 1, 1 \rangle$.

1. Find the position vector \mathbf{a} (i.e. the vector \mathbf{a} with initial point at the origin) with representation given by the directed line segment \overrightarrow{AB} between the points A(0,3,1) and B(2,3,-1).

2. Determine whether each of the following exists. If it does exist, compute it (writing vectors with respect to \mathbf{i} , \mathbf{j} , and \mathbf{k}); if not, state why.

(a)
$$u + w$$

 $2\vec{i} + (\vec{j} + 2\vec{k})$

(b) $|\mathbf{v}| + \mathbf{w}$

Does not exist (Carit add scalar to vector)

(c) $(\mathbf{u} + \mathbf{w}) \cdot (\mathbf{u} + \mathbf{w})$

24

(d) proj_u v

(e) The unit vector in the same direction as $(\mathbf{u} \cdot \mathbf{v}) \mathbf{w}$.

$$= \frac{(\vec{u} \cdot \vec{v}) \vec{w}}{|(\vec{u} \cdot \vec{v}) \vec{w}|} = 0\vec{i} - \frac{1}{\sqrt{2!}} \vec{j} - \frac{1}{\sqrt{2!}} \vec{k}$$

(f) $\mathbf{v} + \langle -3, \frac{1}{2} \rangle$

Does not exist (vectors have diff dimensions)

(g) The angle between \mathbf{v} and the z-axis. **Hint**: Any position vector in the direction of the z-axis may be used.

$$=$$
 $arccos\left(-\sqrt{\frac{2}{3}}\right)$

3. Draw a rectangular box with the origin and the point P(1,2,3) as opposite vertices and with its faces parallel to the coordinate planes. Label all vertices of the box. Note: The arrowheads are pointing towards the *positive* values on each axis!

