Throughout, let $u=\langle 2,3,1\rangle, v=\langle-1,-1,-2\rangle$, and $w=\langle 0,1,1\rangle$.

1. Find the position vector a (i.e. the vector a with initial point at the origin) with representation given by the directed line segment $\overrightarrow{A B}$ between the points $A(0,3,1)$ and $B(2,3,-1)$.
2. Determine whether each of the following exists. If it does exist, compute it (writing vectors with respect to \mathbf{i}, \mathbf{j}, and \mathbf{k}); if not, state why.
(a) $\mathbf{u}+\mathbf{w}$
(b) $|\mathbf{v}|+\mathbf{w}$
(c) $(\mathbf{u}+\mathbf{w}) \cdot(\mathbf{u}+\mathbf{w})$
(d) $\operatorname{proj}_{\mathbf{u}} \mathbf{v}$
(e) The unit vector in the same direction as $(\mathbf{u} \cdot \mathbf{v}) \mathbf{w}$.
(f) $\mathbf{v}+\left\langle-3, \frac{1}{2}\right\rangle$
(g) The angle between \mathbf{v} and the z-axis. Hint: Any position vector in the direction of the z-axis may be used.
3. Draw a rectangular box with the origin and the point $P(1,2,3)$ as opposite vertices and with its faces parallel to the coordinate planes. Label all vertices of the box. Note: The arrowheads are pointing towards the positive values on each axis!

