MAC 2313 — Homework 2

Directions: Complete the following problems for a homework grade. Solutions must be presented in a neat and professional manner in order to receive credit, answers given without showing work will not be eligible to receive partial credit, and work for the problems must be done on scratch paper and not on this handout! Date Due: Tuesday, February 28 (Use this to study!!)

- 1. Let $f(x,y) = 3x^2 + 2xy y^3$, let $g(x,y) = -x^3 + x + y + 2y^2$, let $\mathbf{v} = \langle 3, 4 \rangle$, and let \mathbf{u} be the unit vector in the direction of v. Note: On your exam, you will have to do questions like (b) and (d), and I won't give you the formulas! $\overline{u} = \frac{1}{5} \langle 3, 4 \rangle = \langle \frac{3}{5}, \frac{4}{5} \rangle$ (a) Using any technique you know (e.g. witchcraft, voodoo magic, derivative rules,...), find f_x and f_y . give you the formulas!

$$f_{x} = 6x + 2y$$
 $f_{y} = 2x - 3y^{2}$

(b) Use the limit definitions

$$f_x(x,y) = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}$$
 $f_y(x,y) = \lim_{h \to 0} \frac{f(x,y+y) - f(x,y)}{h}$

to find f_x and f_y . Does this match your answer for (a)?

$$f_x = \lim_{h \to 0} \frac{h(3h+6x+2y)}{h} = 0+6x+2y;$$
 $f_y = \lim_{h \to 0} \frac{h(-h^2+2x-3hy-3y^2)}{h} = 0+2x+0-3y^2$

(c) Using any technique you know (e.g. witchcraft, voodoo magic, gradient thangs,...), find $D_{\mathbf{u}}f(x,y)$.

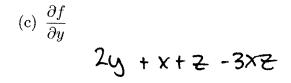
$$D_{u}^{2}f = \langle f_{x}, f_{y} \rangle \cdot \langle \frac{3}{5}, \frac{4}{5} \rangle = \frac{3}{5}(6x+2y) + \frac{4}{5}(2x-3y^{2}).$$

(d) Use the limit definition

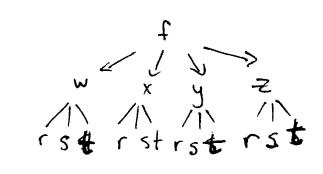
$$D_{\mathbf{u}}f(x,y) = \lim_{h \to 0} \frac{f(x+ah,y+bh) - f(x,y)}{h}$$
 $a = \frac{3}{5}$ $b = \frac{4}{5}$

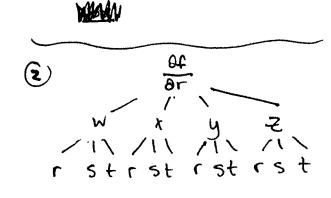
to find $D_{\mathbf{u}}f(x,y)$. Does this match your answer for (c)

$$D_{x}^{2}f(x,y) = \lim_{n\to 0} \frac{h\left(\frac{51}{25}h - \frac{64}{125}h^{2} + \frac{26}{5}x + \frac{6}{5}y - \frac{45}{5}hy - \frac{12}{5}y^{2}\right)}{h} = \frac{26}{5}x + \frac{6}{5}y - \frac{12}{5}y$$


(e) Are f and/or g differentiable? Why or why not?

yes: Differentiable everywhere because
$$f_x$$
, f_y , g_x , g_y exist and are continuous everywhere (see Thrn from 14, 4)


2. Let $f(w, x, y, z) = x^2 + y^2 + z^2 + xy + yz + xz - 3xyz$, where $w = 2r^2 + s$, $x = 2s^2 + r - t$, $y = r^2s + t$, and $z = se^r - 2\sqrt{t}$. Find each of the following. **Note**: w also has t's in it, it just has 0 of them....


(a)
$$\frac{\partial f}{\partial w}$$
 (no w's in $f!$)

(b)
$$\frac{\partial f}{\partial x}$$

 $2x + y + z - 3yz$

$$\begin{array}{c}
\frac{\partial f}{\partial z} \\
2z + y + x - 3xy
\end{array}$$

(e)
$$\frac{\partial f}{\partial r} = \frac{\partial f}{\partial w} \frac{\partial w}{\partial r} + \frac{\partial f}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial r} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial r}$$

where $f_{w_1}f_{x_1}f_{y_1}f_{z_2}$ above & $w_1=4r$, $x_r=1$, $y_r=2rs$, $z_r=se^r$.

$$(f) \frac{\partial f}{\partial s} = \frac{\partial f}{\partial \omega} \frac{\partial \omega}{\partial s} + \frac{\partial f}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial s} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial s}$$

where furtxify, fz above & Ws=1, xs=45, ys=12, 2s=e

$$(g) \frac{\partial f}{\partial t} = \frac{\partial f}{\partial w} \frac{\partial w}{\partial t} + \frac{\partial f}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial t}$$

where fw, fx, fy, fz above ε $W_{\xi}=0$, $X_{\xi}=-1$, $Y_{\xi}=1$, $Z_{\xi}=-\xi^{-y_{2}}=\frac{-1}{\sqrt{L}}$.

(h)
$$\frac{\partial^2 f}{\partial r \partial t}$$
 First AM find $\frac{\partial f}{\partial r}$ (or $\frac{\partial f}{\partial t}$ by Chaircut) & then take the t (or r) partial of it, using same process (e.g using thee ② if you did $\frac{\partial r}{\partial t}$ first & didn't plug $w_1x_1y_1z_2$ in....)

1.00. Note that the state of th
Infinitely many, because sin(xy) is zero infinitely often
(d) Is $(0,0,1)$ a critical point of f ? How do you know?
yes: because $f_{x}(o_{1}c)=0=f_{y}(o_{1}c)$
(e) Could the point $(2,3,f(2,3))$ be a critical point of f ? Why or why not?
No: because neither fx(2,3) nor fy(2,3) is Zero.
(f) Find f_{xx} , f_{xy} , f_{yx} , and f_{yy} .
$f_{xy} = -y^2 \cos(xy)$ $f_{xy} = f_{yx} = -xy \cos(xy) - \sin(xy)$ $f_{yy} = -x^2 \cos(xy)$
(g) Use (g) to find $D(x, y) = \det \begin{pmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{pmatrix}$.
(After much) $D(x,y) = -2xy \cos(xy) \sin(xy) - \sin^2(xy)$
* (h) $(0,1,1)$ is a critical point of f . Is it a local max, local min, or saddle point? How do you know? • can't use 2^{nd} dur test b/c $P(o,1) = 0$ & test is inconclusive
i) Let $\Sigma = \{(x,y) \text{ in } \mathbb{R}^2 \text{ such that } -1 \leq x \leq 1 \text{ and } -1 \leq y \leq 1\}$. Does f attain an absolute maximum on Σ ? An absolute minimum? How do you know?
Both, because f continuous on T & T closed f bounded f is the extreme value theorem f on the closed triangular region Δ with vertices $(2,0)$, $(0,2)$, and $(0,-2)$.
This is nontrivial & your answer won't be a set of pts
won't look like the in-class example. Still: Tell me what you do Icnew! Egood 1st 3 step: what do critical points look like?]

 $f_x = -\sin(xy) \cdot y$ $f_y = -\sin(xy) x$

 $\nabla f(x,y) = \langle f_x, f_y \rangle = \langle -y \sin(x,y), -x \sin(x,y) \rangle$

(b) Find the equation of the tangent plane to z = f(x, y) at the point $\left(\frac{\pi}{2}, \frac{1}{2}, \frac{1}{\sqrt{2}}\right)$.

3. Let $f(x, y) = \cos(xy)$.

(a) Find $\nabla f(x, y)$.