Name: \qquad

MAC 2313 - Homework 2

Directions: Complete the following problems for a homework grade. Solutions must be presented in a neat and professional manner in order to receive credit, answers given without showing work will not be eligible to receive partial credit, and work for the problems must be done on scratch paper and not on this handout! Date Due: Tuesday, February 28 (Use this to study!!)

1. Let $f(x, y)=3 x^{2}+2 x y-y^{3}$, let $g(x, y)=-x^{3}+x+y+2 y^{2}$, let $\mathbf{v}=\langle 3,4\rangle$, and let \mathbf{u} be the unit vector in the direction of \mathbf{v}. Note: On your exam, you will have to do questions like (b) and (d), and I won't give you the formulas!
(a) Using any technique you know (e.g. witchcraft, voodoo magic, derivative rules,...), find f_{x} and f_{y}.
(b) Use the limit definitions

$$
f_{x}(x, y)=\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h} \quad f_{y}(x, y)=\lim _{h \rightarrow 0} \frac{f(x, y+y)-f(x, y)}{h}
$$

to find f_{x} and f_{y}. Does this match your answer for (a)?
(c) Using any technique you know (e.g. witchcraft, voodoo magic, gradient thangs, ...), find $D_{\mathbf{u}} f(x, y)$.
(d) Use the limit definition

$$
D_{\mathbf{u}} f(x, y)=\lim _{h \rightarrow 0} \frac{f(x+a h, y+b h)-f(x, y)}{h}
$$

to find $D_{\mathbf{u}} f(x, y)$. Does this match your answer for (c)?
(e) Are f and/or g differentiable? Why or why not?
2. Let $f(w, x, y, z)=x^{2}+y^{2}+z^{2}+x y+y z+x z-3 x y z$, where $w=2 r^{2}+s, x=2 s^{2}+r-t, y=r^{2} s+t$, and $z=s e^{r}-2 \sqrt{t}$. Find each of the following. Note: w also has t's in it, it just has 0 of them....
(a) $\frac{\partial f}{\partial w}$
(b) $\frac{\partial f}{\partial x}$
(c) $\frac{\partial f}{\partial y}$
(d) $\frac{\partial f}{\partial z}$
(e) $\frac{\partial f}{\partial r}$
(f) $\frac{\partial f}{\partial s}$
(g) $\frac{\partial f}{\partial t}$
(h) $\frac{\partial^{2} f}{\partial r \partial t}$
3. Let $f(x, y)=\cos (x y)$.
(a) Find $\nabla f(x, y)$.
(b) Find the equation of the tangent plane to $z=f(x, y)$ at the point $\left(\frac{\pi}{2}, \frac{1}{2}, \frac{1}{\sqrt{2}}\right)$.
(c) How many critical points does f have, and how do you know?
(d) Is $(0,0,1)$ a critical point of f ? How do you know?
(e) Could the point $(2,3, f(2,3))$ be a critical point of f ? Why or why not?
(f) Find $f_{x x}, f_{x y}, f_{y x}$, and $f_{y y}$.
(g) Use (g) to find $D(x, y)=\operatorname{det}\left(\begin{array}{cc}f_{x x} & f_{x y} \\ f_{y x} & f_{y y}\end{array}\right)$.
(h) $(0,1,1)$ is a critical point of f. Is it a local max, local min, or saddle point? How do you know?
(i) Let $\Sigma=\left\{(x, y)\right.$ in \mathbb{R}^{2} such that $-1 \leq x \leq 1$ and $\left.-1 \leq y \leq 1\right\}$. Does f attain an absolute maximum on Σ ? An absolute minimum? How do you know?
(j) Find the absolute maximum and absolute minimum of the function f on the closed triangular region Δ with vertices $(2,0),(0,2)$, and $(0,-2)$.

