Name: \qquad

MAC 2313 - Homework 1

Directions: Complete the following problems for a homework grade. Solutions must be presented in a neat and professional manner in order to receive credit, answers given without showing work will not be eligible to receive partial credit, and work for the problems must be done on scratch paper and not on this handout! Date Due: Monday, January 30.

1. (a) Navigate to our course homepage at
http://www.math.fsu.edu/~cstover/teaching/sp17_2313/
(b) Read and familiarize yourself with the three resources listed under Supplementary Resources on the General Info tab.
(c) Follow the instructions for using Slack messenger.

Note: This may require that I approve your email address, so to avoid some last minute glitch where I don't get to your approval on-time, please don't wait to do this!
(d) Navigate to the channel \#random in the left column under Channels (its browser url should be something like https://spring2017-calc3.slack.com/messages/random/) and introduce yourself.

Note: This will be visible to everyone who signs into our class's chat room, so you definitely want to keep this PG-13, safe for work, and non-incriminatory. ©)
2. Plot $(1,-1,1)$ and $\langle-2,2,-3\rangle$ on the axes provided below. Note: The arrowheads are pointing towards the positive values on each axis!

3. Write the vector from $(0,1,2)$ to $(1, \pi,-4)$ in terms of the standard basis vectors \mathbf{i}, \mathbf{j}, and \mathbf{k}.
4. Consider the vectors $\mathbf{u}=\langle-2,3,1\rangle, \mathbf{v}=\mathbf{i}+\mathbf{j}+\mathbf{k}$, and $\mathbf{w}=\langle 0,-1,-1\rangle$. Determine whether each of the following quantities is a scalar or a vector, and express each vector with respect to \mathbf{i}, \mathbf{j}, and \mathbf{k}.
(a) $\mathbf{v}+\mathbf{w}$
(b) $3 \mathbf{v}$
(c) $(\mathbf{u} \cdot \mathbf{w}) \mathbf{v}$
(d) The unit vector in the same direction as $\mathbf{u}+\mathbf{w}$
(e) $(\mathbf{w} \cdot \mathbf{w}) \mathbf{w}$
(f) $\mathbf{w} \times \mathbf{u}$
(g) $\mathbf{u} \times \mathbf{w}$
(h) The angle between $\mathbf{u}+\mathbf{w}$ and $\mathbf{u} \times \mathbf{w}$.
(i) The unit vector in the same direction as $\mathbf{w} \times \mathbf{u}-\mathbf{u} \times \mathbf{w}$
(j) $|\mathbf{v}-\mathbf{w}|$
(k) $|\mathbf{v} \times \mathbf{u}|$
(l) The unit vector orthogonal to both $\mathbf{u}+3 \mathbf{v}$ and $2 \mathbf{w}$
(m) The area of the parallelogram spanned by $\mathbf{u}+\mathbf{i}$ and $-2 \mathbf{w}$
(n) $\operatorname{comp}_{\mathbf{u}} \mathbf{v}$ and $\operatorname{proj}_{\mathbf{u}} \mathbf{v}$
5. Let $\mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle, \mathbf{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle, \mathbf{c}=\left\langle c_{1}, c_{2}, c_{3}\right\rangle, \mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$, and $\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ be arbitrary vectors in \mathbb{R}^{3}. Prove each of the following.
(a) $\mathbf{i} \cdot \mathbf{j}=\mathbf{j} \cdot \mathbf{k}=\mathbf{k} \cdot \mathbf{i}=0$
(b) $\mathbf{i} \cdot \mathbf{i}=\mathbf{j} \cdot \mathbf{j}=\mathbf{k} \cdot \mathbf{k}=1$
(c) The vector $\mathbf{b}-\operatorname{proj}_{\mathbf{a}} \mathbf{b}$ is orthogonal to \mathbf{a}
(d) $|\mathbf{a}+\mathbf{b}|^{2}+|\mathbf{a}-\mathbf{b}|^{2}=2|\mathbf{a}|^{2}+2|\mathbf{b}|^{2}$
(e) $\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \cdot \mathbf{c}) \mathbf{b}-(\mathbf{a} \cdot \mathbf{b}) \mathbf{c}$
(f) $(\mathbf{u} \times \mathbf{v}) \cdot(\mathbf{a} \times \mathbf{b})=(\mathbf{u} \cdot \mathbf{a})(\mathbf{v} \cdot \mathbf{b})-(\mathbf{v} \cdot \mathbf{a})(\mathbf{u} \cdot \mathbf{b})$
(g) $(\mathbf{u} \times \mathbf{v}) \times \mathbf{w}+(\mathbf{v} \times \mathbf{w}) \times \mathbf{u}+(\mathbf{w} \times \mathbf{u}) \times \mathbf{v}=\mathbf{0}$
6. Find each of the following.
(a) The equation of the line passing through $(2,1,-3)$ and $(6,-1,-5)$.
(b) The equation of the line passing through $(3,-1,2)$ in the direction of $2 \mathbf{i}-3 \mathbf{j}+4 \mathbf{k}$.
(c) The equation of the line through $(1,-1,4)$ and perpendicular to both $\mathbf{i}+\mathbf{j}-\mathbf{k}$ and $\langle 0,-3,4\rangle$.
(d) The equation of the plane passing through ($1,1,1$) with normal vector $\mathbf{n}=2 \mathbf{i}+\mathbf{j}-2 \mathbf{k}$.
(e) A unit normal vector to the plane $3 x+y-z=10$.
(f) The equation of the plane through the point $(3,-1,-1)$ and perpendicular to the vector $\mathbf{i}-2 \mathbf{j}+\mathbf{k}$.
(g) The equation of the line through $(1,1,1)$ and orthogonal to the plane containing $(0,1,0)$, $(1,0,0)$, and $(0,0,1)$.
(h) The angle between the planes $x+y+z=1$ and $-x-6 y+z=4$.
(i) The (curve formed by the) intersection of the two-sheet hyperboloid $-x^{2}+\frac{1}{4} y^{2}-\frac{1}{2} z^{2}=1$ and the plane $z=x-\frac{1}{10} y$ (see figures below). Simplify fully!

