
Formulas

Vectors and Related

Throughout, let u = 〈u1, u2, u3〉, v = 〈v1, v2, v3〉, and w = 〈w1, w2, w3〉 be arbitrary vectors in R3 and let
c be a (real) scalar.

u± v = 〈u1 ± v1, u2 ± v2, u3 ± v3〉

cu = 〈cu1, cu2, cu3〉

|u| =
√
u21 + u22 + u23

u · v = u1v1 + u2v2 + u3v3

θ = cos−1
(

u · v
|u| |v|

)
, where θ is the angle between u and v

proju v = (|v| cos θ) (unit vector in the direction of u)

=

(
u · v
|u|

)
u

|u|

=

(
u · v
|u|2

)
u

compu v = | proju v|

=
u · v
|u|

u× v = det

 i j k
u1 u2 u3
v1 v2 v3


= i det

(
u2 u3
v2 v3

)
− j det

(
u1 u3
v1 v3

)
+ k det

(
u1 u2
v1 v2

)
= i (u2v3 − u3v2)− j (u1v3 − u3v1) + k (u1v2 − u2v1)

u · (v ×w) = det

 u1 u2 u3
v1 v2 v3
w1 w2 w3
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Lines and Planes

Here, let P0(x0, y0, z0) be a point in R3, let r0 = 〈x0, y0, z0〉 be a position vector for P0 (in R3), and let
v = 〈a, b, c〉 be a vector in R3. We write the components of the ubiquitous vector r as r = 〈x, y, z〉.

Line L through P0 and in the same direction as v:

r = r0 + tv ( vector equation of L )

(components of r0 and v) =⇒ r = 〈x0, y0, z0〉+ t〈a, b, c〉
(vector addition) =⇒ r = 〈x0 + ta, y0 + tb, z0 + tc〉

(components of r) =⇒ 〈x, y, z〉 = 〈x0 + ta, y0 + tb, z0 + tc〉

By vector equality, we get the parametric equations for L:

〈x, y, z〉 = 〈x0 + ta, y0 + tb, z0 + tc〉 ⇐⇒ x = x0 + ta, y = y0 + tb, z = z0 + tc ;

to help remember this, the in-words summary is point plus vector t. By solving the parametric equations
for t, we get the symmetric equations for L:

t =
x− x0
a

=
y − y0
b

=
z − z0
c

Plane P through P0 and orthogonal to v:

v · (r− r0) = 0 ( vector equation of P )

(components of the vectors) =⇒ 〈a, b, c〉 · (〈x, y, z〉 − 〈x0, y0, z0〉) = 0

(vector subtraction) =⇒ 〈a, b, c〉 · 〈x− x0, y − y0, z − z0〉 = 0

(dot product ) =⇒ a(x− x0) + b(y − y0) + c(z − z0) = 0 ( scalar equation of P )

You can also expand the last equation out to get a linear equation for P :

ax+ by + cz + d = 0 where d = −ax0 − by0 − cz0

Vector Functions

Now, we consider a vector function r(t) = 〈f(t), g(t), h(t)〉. Recall that the arc length of r on the interval
t = a to t = b is

L =

∫ b

a

|r′(t)| dt =

∫ b

a

√(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2

dt

Replacing the upper limit with t and letting it vary on the interval [a, b] yields the arc length function

s(t) =

∫ t

a

|r′(u)| du =

∫ t

a

√(
dx

du

)2

+

(
dy

du

)2

+

(
dz

du

)2

du
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In addition, if we let T, N, B, and κ denote the unit tangent vector, the unit normal vector, the binormal
vector, and the curvature of (the space curve determined by) r(t), then

T(t) =
r′(t)

|r′(t)|
N(t) =

T′(t)

|T′(t)|
B(t) = T(t)×N(t)

κ =

∣∣∣∣dTds
∣∣∣∣ =
|T′(t)|
|r′(t)|

=
|r′(t)× r′′(t)|
|r′(t)|3

.

Motion in Space

If we assume that a particle’s position in space is specified by r(t) = 〈f(t), g(t), h(t)〉, then we have that
the particle’s velocity v(t) and acceleration a(t) are the first and second derivatives of r, respectively:

v(t) = r′(t) and a(t) = r′′(t).

Also, the speed v(t) (note that this isn’t a vector) of the particle is the magnitude of its velocity:

v = |v(t)| = |r′(t)|.

As we saw in class, we want to write a = aTT+ aNN where aT and aN are the tangential component of a
and the normal component of a, respectively. This gives us the following formulas:

aT =
r′(t) · r′′(t)
|r′(t)|

and aN =
|r′(t)× r′′(t)|
|r′(t)|

.
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