Exam Review Solutions

1. (a) $\sqrt{57}$
(b) Does not exist - can't cross a scalar with a vector.
(c) $\left\langle-\frac{3}{17}, \frac{2}{17},-\frac{2}{17}\right\rangle$
(d) $\langle-8,-11,1\rangle$
(e) $\sqrt{186}$
(f) Does not exist - can't dot a scalar with a vector.
(g) $\frac{\pi}{2}$
2. Note: There was a typo in this problem that led to the tangent vector $\mathbf{r}^{\prime}(t)$ being the zero vector at $t=0$. For that reason, I told some people to do $t=\pi / 4$ for practice. I'm including solutions of both here!

Throughout, note that:

- $\sin (\pi / 2-t)=\cos t$ and $\cos (\pi / 2-t)=\sin t$. This isn't necessary to notice, but it makes the derivatives easier and these solutions make use of it.
- In light of the above, $\mathbf{r}^{\prime}(t)=\langle-\sin t,-\sin t \cos (\cos t), 2 t\rangle$.
$t=0$:
$\mathbf{r}^{\prime}(0)=\langle 0,0,0\rangle$ is parallel to the tangent line and $P=\mathbf{r}(0)=(1, \sin 1,0)$ is on it, so the line is "point plus vector t," i.e.

$$
x=1+0 t \quad y=\sin 1+0 t \quad z=0+0 t \Longrightarrow x=1 \quad y=\sin 1 \quad z=0 .
$$

$t=\pi / 4:$
$\mathbf{r}^{\prime}\left(\frac{\pi}{4}\right)=\left\langle-\frac{1}{\sqrt{2}}, \frac{\cos \left(\frac{1}{\sqrt{2}}\right)}{\sqrt{2}}, \frac{\pi}{2}\right\rangle$ is parallel to the tangent line and $P=\mathbf{r}\left(\frac{\pi}{4}\right)=\left(\frac{1}{\sqrt{2}}, \sin \left(\frac{1}{\sqrt{2}}\right), \frac{\pi^{2}}{16}\right)$ is on it, so the line (after simplifying) is:

$$
x=-\frac{t-1}{\sqrt{2}} \quad y=-\frac{\cos \left(\frac{1}{\sqrt{2}}\right)}{\sqrt{2}} t+\sin \left(\frac{1}{\sqrt{2}}\right) \quad z=\frac{1}{16} \pi(\pi+8 t)
$$

3. (a) The plane containing P, Q, and R necessarily contains the vectors $\overrightarrow{P Q}=\langle-2,-4,2\rangle$ and $\overrightarrow{P R}=\langle-1,-5,-4\rangle$, so the vector $\overrightarrow{P Q} \times \overrightarrow{P R}$ is perpendicular to it. Therefore,

$$
\mathbf{n}=\overrightarrow{P Q} \times \overrightarrow{P R}=\langle 26,-10,6\rangle
$$

is normal to the plane. Using \mathbf{n} and $P(1,3,5)$, we have the equation of the plane being

$$
\begin{equation*}
26(x-1)-10(y-3)+6(z-5)=0 . \tag{1}
\end{equation*}
$$

(b) As in class, we note that the we can parametrize the cylinder $x^{2}+y^{2}=4$ using $x=2 \cos t$ and $y=2 \sin t$. Plugging these into (1) and solving for z yields

$$
z=\frac{1}{3}(10 \sin t-26 \cos t+13),
$$

and so the parametrization of this curve is

$$
\mathbf{r}(t)=\left\langle 2 \cos t, 2 \sin t, \frac{1}{3}(10 \sin t-26 \cos t+13)\right\rangle .
$$

This curve can be seen below.

4. Note that after simplification,

$$
\mathbf{r}^{\prime}(t)=\left\langle e^{t} \cos t-e^{t} \sin t, e^{t}, e^{t} \sin t+e^{t} \cos t\right\rangle
$$

and

$$
\mathbf{r}^{\prime \prime}(t)=\left\langle-2 e^{t} \sin t, e^{t}, 2 e^{t} \cos t\right\rangle
$$

(a) \mathbb{R}
(b) Velocity is $\mathbf{r}^{\prime}(t)=\left\langle e^{t} \cos t-e^{t} \sin t, e^{t}, e^{t} \sin t+e^{t} \cos t\right\rangle$

Speed is \mid velocity $\left|=\left|\mathbf{r}^{\prime}(t)\right|=\sqrt{3} e^{t}\right.$
Acceleration is $\mathbf{r}^{\prime \prime}(t)=\left\langle-2 e^{t} \sin t, e^{t}, 2 e^{t} \cos t\right\rangle$.
(c) $\mathbf{T}(t)=\left\langle\frac{\cos t-\sin t}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{\sin t+\cos t}{\sqrt{3}}\right\rangle$
(d) $\mathbf{N}(t)=\left\langle-\frac{\sin t+\cos t}{\sqrt{2}}, 0, \frac{\cos t-\sin t}{\sqrt{2}}\right\rangle$
(e) $\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)=\left\langle\frac{\cos t-\sin t}{\sqrt{6}}, \sqrt{\frac{2}{3}}, \frac{\sin t+\cos t}{\sqrt{6}}\right\rangle$
(f) $\kappa(t)=\frac{\sqrt{2}}{3} e^{-t}$
(g) $a_{T}=\sqrt{3} e^{t}$
(h) $a_{N}=\sqrt{2} e^{t}$

Note: Simplifying $a_{T} \mathbf{T}+a_{N} \mathbf{N}$ yields

$$
a_{T} \mathbf{T}+a_{N} \mathbf{N}=\left\langle-2 e^{t} \sin t, e^{t}, 2 e^{t} \cos t\right\rangle=\mathbf{a}(t)
$$

as expected (because, remember: $\mathbf{a}(t)$ should equal $a_{T} \mathbf{T}+a_{N} \mathbf{N}$ for all $t \ldots$).

