## Exam Review

1. Let $\mathbf{u}=\langle 3,-2,2\rangle$ and $\mathbf{v}=\mathbf{i}-\mathbf{j}-3 \mathbf{k}$. Compute each of the following or state that it does not exist; if it does not exist, clearly explain why.
(a) $|\mathbf{u}+2 \mathbf{v}|$
(b) $|\mathbf{u}-\mathbf{v}| \times \mathbf{u}$
(c) $\operatorname{proj}_{\mathbf{u}} \mathbf{v}$
(d) $\mathbf{v} \times \mathbf{u}$
(e) $|\mathbf{u} \times \mathbf{v}|$
(f) $(\mathbf{u} \cdot \mathbf{v}) \cdot(\mathbf{i}+\mathbf{j})$
(g) The angle between $\mathbf{v}$ and $\mathbf{u}-\operatorname{proj}_{\mathbf{v}} \mathbf{u}$.
2. Let $\mathbf{r}(t)=\left\langle\cos t, \sin (\sin (\pi / 2-t)), t^{2}\right\rangle$. Find the equation of the tangent line to $\mathbf{r}$ at $t=0$.
3. (a) Find the equation of the plane containing the points $P(1,3,5), Q(-1,-1,7)$, and $R(0,-2,1)$.
(b) Find a vector function that represents the curve of intersection of the cylinder $x^{2}+y^{2}=4$ with the plane from part (a).
4. Let $\mathbf{r}(t)=\left\langle e^{t} \cos t, e^{t}, e^{t} \sin t\right\rangle$. Find each of the following. Simplify fully!
(a) The domain of $\mathbf{r}$
(b) The velocity, acceleration, and speed of a particle with position vector $\mathbf{r}(t)$
(c) The unit tangent vector $\mathbf{T}(t)$ of $\mathbf{r}$
(d) The unit normal vector $\mathbf{N}(t)$ of $\mathbf{r}$
(e) The binormal vector $\mathbf{B}(t)$ of $\mathbf{r}$. What is $|\mathbf{B}(t)|$ ?
(f) The curvature $\kappa(t)$ of $\mathbf{r}$
(g) The tangential component of the acceleration $\mathbf{a}(t)$
(h) The normal component of $\mathbf{a}(t)$
