Exam Review

- 1. Let $\mathbf{u} = \langle 3, -2, 2 \rangle$ and $\mathbf{v} = \mathbf{i} \mathbf{j} 3\mathbf{k}$. Compute each of the following or state that it does not exist; if it does not exist, clearly explain why.
 - (a) $|{\bf u} + 2{\bf v}|$
 - (b) $|\mathbf{u} \mathbf{v}| \times \mathbf{u}$
 - (c) $\operatorname{proj}_{\mathbf{u}} \mathbf{v}$
 - (d) $\mathbf{v} \times \mathbf{u}$
 - (e) $|\mathbf{u} \times \mathbf{v}|$
 - (f) $(\mathbf{u} \cdot \mathbf{v}) \cdot (\mathbf{i} + \mathbf{j})$
 - (g) The angle between \mathbf{v} and $\mathbf{u} \operatorname{proj}_{\mathbf{v}} \mathbf{u}$.
- 2. Let $\mathbf{r}(t) = \langle \cos t, \sin(\sin(\pi/2 t)), t^2 \rangle$. Find the equation of the tangent line to \mathbf{r} at t = 0.
- 3. (a) Find the equation of the plane containing the points P(1,3,5), Q(-1,-1,7), and R(0,-2,1).
 - (b) Find a vector function that represents the curve of intersection of the cylinder $x^2 + y^2 = 4$ with the plane from part (a).
- 4. Let $\mathbf{r}(t) = \langle e^t \cos t, e^t, e^t \sin t \rangle$. Find each of the following. Simplify fully!
 - (a) The domain of \mathbf{r}
 - (b) The velocity, acceleration, and speed of a particle with position vector $\mathbf{r}(t)$
 - (c) The unit tangent vector $\mathbf{T}(t)$ of \mathbf{r}
 - (d) The unit normal vector $\mathbf{N}(t)$ of \mathbf{r}
 - (e) The binormal vector $\mathbf{B}(t)$ of \mathbf{r} . What is $|\mathbf{B}(t)|$?
 - (f) The curvature $\kappa(t)$ of **r**
 - (g) The tangential component of the acceleration $\mathbf{a}(t)$
 - (h) The normal component of $\mathbf{a}(t)$