\qquad

Note: This isn't for a grade and there is no due date. Also, if your goal is to focus on the new material, you should do problems 2-5 first.

1. Evaluate the surface integral

$$
\iint_{F} \mathbf{F} \cdot d \mathbf{S}
$$

where $\mathbf{F}(x, y, z)=x y \mathbf{i}+3 x^{2} \mathbf{j}+x z \mathbf{k}$ and where F is the surface $z=x e^{y}, 0 \leq x \leq 1,0 \leq y \leq 1$ with upward orientation.
2. Use Stokes' theorem to evaluate each of the following.
(i) $\iint_{F} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}$, where $\mathbf{F}=\left\langle 2 x \cos 2 z, e^{y} \sin z, x^{2} y e^{y}\right\rangle$ and F is the hemisphere $x^{2}+y^{2}+z^{2}=4$, $z \geq 0$, oriented upward.
(ii) $\oint_{C} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}(x, y, z)=\left(x+y^{2}\right) \mathbf{i}+\left(y+z^{2}\right) \mathbf{j}+\left(z+x^{2}\right) \mathbf{k}$ and where C is the triangle with vertices $(2,0,0),(0,2,0)$, and $(0,0,2)$.
3. Verify that Stokes' theorem is true for the vector field $\mathbf{F}=\langle y, z, x\rangle$ and the surface F equal to the hemisphere $x^{2}+y^{2}+z^{2}=1, z \geq 0$, oriented upward.
Hint: $\sin ^{2}(x)=\frac{1}{2}(1-\cos 2 x)$. Also you can parametrize F as

$$
\mathbf{r}(u, v)=\langle\cos (u) \sin (v), \sin (u) \sin (v), \cos (v)\rangle \quad(0 \leq u \leq 2 \pi, 0 \leq v \leq \pi / 2)
$$

which is like spherical coordinates with $\rho=1$ except that $d A=d u d v$ without a pesky $\sin (v)$ Jacobianthing in there.
4. Use the divergence theorem to compute each of the following.
(i) The flux of $\mathbf{F}=\left\langle x^{2} \sin y, x \cos y,-x z \sin y\right\rangle$ across the "fat sphere" F equal to $x^{8}+y^{8}+z^{8}=8$.
(ii) $\iint_{F} \mathbf{F} \cdot d \mathbf{S}$, where $\mathbf{F}=\left(\cos z e^{e^{z}}+x y^{2}\right) \mathbf{i}+z \cos x \sin x z e^{-z} \mathbf{j}+\left(\sin y+x^{2} z\right) \mathbf{k}$ and where F is the surface of the solid bounded by the paraboloid $z=x^{2}+y^{2}$ and the plane $z=4$.
Hint: Use cylindrical coordinates.
5. Verify that the divergence theorem is true for the vector field $\mathbf{F}=\left\langle x^{2}, x y, z\right\rangle$ and the solid E bounded by the paraboloid $z=4-x^{2}-y^{2}$ and the $x y$-plane.

