A Q \& A Guide to Concepts You Need to Know

Question: Does a function $f(x, y)$ have a limit as (x, y) approaches the point (a, b) in \mathbb{R}^{2} ?
Answer: $f(x, y) \rightarrow L$ as $(x, y) \rightarrow(a, b)$ if and only if, for all $\varepsilon>0$, there exists $\delta>0$ such that $\mid f\left(\overline{x, y)-L} \mid<\varepsilon\right.$ whenever $0<\delta<\sqrt{(x-a)^{2}+(y-b)^{2}}$.

Question: Do I have to do all that work if I want to conclude that $f(x, y)$ doesn't have a limit as (x, y) approaches the point (a, b) in \mathbb{R}^{2} instead?

Answer: No! Remember: To show that $\lim _{(x, y) \rightarrow(a, b)} f(x, y)$ doesn't exist, all you need to do is find two paths C_{1} and C_{2} such that $f(x, y) \rightarrow L_{1}$ along C_{1} and $f(x, y) \rightarrow L_{2} \neq L_{1}$ along C_{2} !

Also remember: Good paths to try are the x-axis, the y-axis, the lines $y= \pm x$, the parabolas $y= \pm x^{2}$ (and $x= \pm y^{2}$), and any paths that make the function undefined (e.g. those which make the denominator of a quotient equal to zero)!

Question: Can I "just plug in" a point (a, b) in \mathbb{R}^{2} when I'm evaluating $\lim _{(x, y) \rightarrow(a, b)} f(x, y)$?
Answer: If and only if f is continuous at (a, b) ! Recall: f is defined to be continuous at (a, b) in \mathbb{R}^{2} if $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=f(a, b)$, which is the math way of saying f has no holes or jumps at that point!

Question: Can I take derivatives of a function $f(x, y)$?
Answer: You can try! The easiest kinds of derivatives to take are the partial derivatives

$$
f_{x}(x, y)=\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h} \quad f_{y}(x, y)=\lim _{h \rightarrow 0} \frac{f(x, y+y)-f(x, y)}{h}
$$

which are computed using the old calculus 1 derivative rules by treating y or x as a constant for f_{x} and f_{y}, respectively.

Question: What do partial derivatives mean, geometrically?
Answer: By treating x and y as constants, you're slicing into your surface $z=f(x, y)$ using planes parallel to the $(y z)$ - and $(x z)$-planes, respectively.

Each of these slices yield a curve on the surface z, and the partials f_{x} and f_{y} give the slopes of the lines tangent to those curves.

Question: Can I take more than one partial derivative?
Answer: Yep! Given $f(x, y)$, you can iterate partials and find things like $f_{\text {xyxyxxxxyxyxyyyxyxyxyxyxyx } \ldots \text { if }}$ you want.

Question: When can I change the order of my partial derivatives at a point (e.g. when does $f_{x y}(a, b)=$ $\left.f_{y x}(a, b)\right)$?
Answer: Refer to Clairaut's theorem: Suppose f is defined on a disk D that contains the point $\left(a, \overline{b) \text {. If } f_{x y}}\right.$ and $f_{y x}$ are both continuous on D, then $f_{x y}(a, b)=f_{y x}(a, b)$.

Under these hypotheses, $f_{x y}(a, b)=f_{y x}(a, b)$ also implies that $f_{x y x}(a, b)=f_{y x x}(a, b)=f_{x x y}(a, b)$, etc. You should use this fact in problems where you're asked to find longs strings of partials like $f_{x y x y x x x x y x y x y y y x y x y x y x y x y x}$, so that you can pick the easiest sequence of partial derivatives.

Question: How do I find the tangent plane to $z=f(x, y)$ at a point $P(a, b, c)$?
Answer: The formula for that plane is $z-c=f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)$, where f_{x} and f_{y} are your partials!

Question: What does it mean for a function to be f differentiable at a point (a, b) in \mathbb{R}^{2} ?
Answer: Geometrically, it means that Δz can be closely approximated by $d z$ for points at and near (a, \bar{b}). This isn't a good way to determine whether a function is differentiable somewhere, though.

Question: How do I know if a function f differentiable at a point (a, b) in \mathbb{R}^{2} ?
Answer: Using the theorem from class: If the partial derivatives f_{x} and f_{y} exist near (a, b) and are continuous at (a, b), then f is differentiable at (a, b).

Question: Can't I take derivatives in directions other than parallel to the $(y z)$ - and ($x z$)-planes?
Answer: Er...sometimes. Given a function $z=f(x, y)$ and a unit vector $\mathbf{u}=\langle a, b\rangle$, the directional derivative $D_{\mathbf{u}} f$ of f in the direction of \mathbf{u} is given by $D_{\mathbf{u}} f(x, y)=a f_{x}(x, y)+b f_{y}(x, y)$.

Note that this is a function into which you can plug your favorite coordinates, assuming you're given a point.

Question: When can I take the directional derivative?
Answer: By a theorem in class: If $f(x, y)$ is a differentiable function, then f has a directional derivative in the direction of any unit vector $\mathbf{u}=\langle a, b\rangle$.

Question: Isn't there another way to write the directional derivative formula using some upside-down triangle thing?

Answer: Yep! Recall that the gradient ∇f of $f(x, y)$ is the vector $\left\langle f_{x}, f_{y}\right\rangle$. This makes the above formula equivalent to $D_{\mathbf{u}} f(x, y)=\nabla f \cdot \mathbf{u}$.

Question: In which direction does (a differentiable function) $f(x, y)$ change fastest?
Answer: In the direction of ∇f.
For example, if $f(x, y)=x^{2}+y^{2}$, then the direction of maximum change of f at the point $(1,1,2)$ is $\nabla f(1,1)=\left\langle f_{x}(1,1), f_{y}(1,1)\right\rangle=\langle 2,2\rangle$, because $f_{x}=2 x$ and $f_{y}=2 y$.

Question: What is the maximum rate of change of (a differentiable function) f at a point $\left(x_{0}, y_{0}\right)$? Answer: It's precisely the magnitude $|\nabla f|$.

So, in the above example, the direction of maximum change was $\nabla f(1,1)=\left\langle f_{x}(1,1), f_{y}(1,1)\right\rangle=$

Question: What is the geometric significance of the gradient vector?
Answer: The level curves of a function $f(x, y)$ are the curves of the form $f(x, y)=$ constant.
Given a point $P\left(x_{0}, y_{0}\right)$, the gradient vector $\nabla f\left(x_{0}, y_{0}\right)$ is the vector emanating from P and orthogonal to the level curve containing P.

Question: Which points can be local mins or local maxes for a function f ?
Answer: Critical points.

Question: How do I know if a point is a critical point of f ?
Answer: A point $P\left(x_{0}, y_{0}\right)$ is a critical point of f if and only if $f_{x}=0$ and $f_{y}=0$ at P.

Question: Are all critical points local mins or local maxes?
Answer: No. A critical point P which isn't a local min or a local max is called a saddle point. For example, the red point on the below surface is a saddle point.

Question: How do I know if a critical point of a function is a local max, a local min, or a saddle point?
Answer: The second derivative test tells you (most of the time)!

Question: What is this ::airquotes:: second derivative test ::airquotes:: of which you speak?
Answer: Let (a, b) be a critical point of a function f whose second partial derivatives $f_{x x}, f_{x y}, f_{y x}$, and $f_{y y}$ are all continuous near (a, b) and let

$$
D(x, y)=\operatorname{det}\left(\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right)=f_{x x} f_{y y}-\left(f_{x y}\right)^{2} .
$$

Then:
(i) If $D(a, b)>0$ and $f_{x x}<0$, then (a, b) is an absolute maximum;
(ii) if $D(a, b)>0$ and $f_{x x}>0$, then (a, b) is an absolute minimum; and
(iii) if $D(a, b)<0$, then (a, b) is a saddle point. Moreover:
(iv) If $D(a, b)=0$, then the second derivative test is inconclusive and you have to use a different method to determine the answer you want.

Question: Are there any theorems that tell me about absolute maxes and absolute mins?
Answer: Indeed, it's called the extreme value theorem!

Question: Go on....
Answer: The extreme value theorem is as follows: If $f(x, y)$ is a function which is continuous on a closed, bounded region Σ in \mathbb{R}^{2}, then f attains both an absolute max and absolute min on Σ. Moreover, the absolute extrema of f on Σ either occur at critical points within Σ or on the boundary of Σ.

Question: What are closed and/or bounded sets?
Answer: A set Σ in \mathbb{R}^{2} is closed if it contains all its boundary points; it is bounded if it can be enclosed in a disk of finite radius. The below figures show this, graphically.

Figure 1
(Left to Right) 1. Not Closed + Not Bounded; 2. Closed + Not Bounded; 3. Not Closed + Bounded; 4. Closed + Bounded. Note: The outside boxes are not included in any of the regions.

Question: Great! Now, can I maximize/minimize a function subject to ≥ 1 constraints? If so, how?
Short Answer: You can, using Lagrange Multipliers!
Longer Answer: If you have a two- (or three-) variable function $f(x, y)$ (or $f(x, y, z)$) subject to one constraint $g(x, y)=$ constant (or $g(x, y, z)=$ constant), then $\nabla f=\lambda \nabla g$ for some real number λ. Assuming f is two-variable, this yields three equations:
(i) $f_{x}=\lambda g_{x}$
(ii) $f_{y}=\lambda g_{y}$
(iii) $g(x, y)=$ constant

Now: Solve these for points (x, y); evaluate $f(x, y)$ for all those points; and pick out which of the $f(x, y)$-values are largest and smallest. These are the maxes and mins, respectively.

Likewise, if you have a three-variable function $f(x, y, z)$ subject to two constraints $g(x, y, z)=$ constant and $h(x, y, z)=$ constant, you have $\nabla f=\lambda \nabla g+\mu \nabla h$. Now, this yields five equations:
(i) $f_{x}=\lambda g_{x}+\mu h_{x}$
(ii) $f_{y}=\lambda g_{y}+\mu h_{y}$
(iii) $f_{z}=\lambda g_{z}+\mu h_{z}$
(iv) $g(x, y, z)=$ constant
(v) $h(x, y, z)=\mathrm{constant}$

Now, you do the same as above: Solve these for points (x, y, z); evaluate $f(x, y, z)$ for all those points; and pick out which of the $f(x, y, z)$-values are largest and smallest. These are the maxes and mins, respectively.

Question: How is the Lagrange thing related to the absolute max/min thing above?
Answer: By changing the two-variable constraint $g(x, y)=$ constant into $g(x, y) \leq$ constant, you may end up with a closed, bounded region in \mathbb{R}^{2}.

If so, and if $f(x, y)$ is continuous on the region $g(x, y) \leq$ constant, then we can use the extreme value theorem to know:
(a) f attains absolute maxes and mins on that region; and
(b) these maxes/mins lie either at critical points of the region or on the region's boundary.
. Finally, by noting that the Lagrange multiplier method has already checked the boundary of this region, we only need to compare the $f(x, y)$ values we got above to the values of f at critical points living inside the region to find which are absolute maxes and absolute mins.

