
A Q & A Guide to Concepts You Need to Know

Question: Does a function f(x, y) have a limit as (x, y) approaches the point (a, b) in R2?

Answer: f(x, y) → L as (x, y) → (a, b) if and only if, for all ε > 0, there exists δ > 0 such that

|f(x, y)− L| < ε whenever 0 < δ <
√

(x− a)2 + (y − b)2.

Question: Do I have to do all that work if I want to conclude that f(x, y) doesn’t have a limit as (x, y)
approaches the point (a, b) in R2 instead?

Answer: No! Remember: To show that lim(x,y)→(a,b) f(x, y) doesn’t exist, all you need to do is find
two paths C1 and C2 such that f(x, y)→ L1 along C1 and f(x, y)→ L2 6= L1 along C2!

Also remember: Good paths to try are the x-axis, the y-axis, the lines y = ±x, the parabolas
y = ±x2 (and x = ±y2), and any paths that make the function undefined (e.g. those which make the
denominator of a quotient equal to zero)!

Question: Can I “just plug in” a point (a, b) in R2 when I’m evaluating lim(x,y)→(a,b) f(x, y)?

Answer: If and only if f is continuous at (a, b)! Recall: f is defined to be continuous at (a, b) in R2

if lim(x,y)→(a,b) f(x, y) = f(a, b), which is the math way of saying f has no holes or jumps at that point!

Question: Can I take derivatives of a function f(x, y)?

Answer: You can try! The easiest kinds of derivatives to take are the partial derivatives

fx(x, y) = lim
h→0

f(x+ h, y)− f(x, y)

h
fy(x, y) = lim

h→0

f(x, y + y)− f(x, y)

h
,

which are computed using the old calculus 1 derivative rules by treating y or x as a constant for fx and
fy, respectively.

Question: What do partial derivatives mean, geometrically?

Answer: By treating x and y as constants, you’re slicing into your surface z = f(x, y) using planes
parallel to the (yz)- and (xz)-planes, respectively.

Each of these slices yield a curve on the surface z, and the partials fx and fy give the slopes of the
lines tangent to those curves.

Question: Can I take more than one partial derivative?

Answer: Yep! Given f(x, y), you can iterate partials and find things like fxyxyxxxxyxyxyyyxyxyxyxyxyx...if
you want.

Question: When can I change the order of my partial derivatives at a point (e.g. when does fxy(a, b) =
fyx(a, b))?

Answer: Refer to Clairaut’s theorem: Suppose f is defined on a disk D that contains the point
(a, b). If fxy and fyx are both continuous on D, then fxy(a, b) = fyx(a, b).
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Under these hypotheses, fxy(a, b) = fyx(a, b) also implies that fxyx(a, b) = fyxx(a, b) = fxxy(a, b),
etc. You should use this fact in problems where you’re asked to find longs strings of partials like
fxyxyxxxxyxyxyyyxyxyxyxyxyx, so that you can pick the easiest sequence of partial derivatives.

Question: How do I find the tangent plane to z = f(x, y) at a point P (a, b, c)?

Answer: The formula for that plane is z − c = fx(a, b)(x− a) + fy(a, b)(y − b), where fx and fy are
your partials!

Question: What does it mean for a function to be f differentiable at a point (a, b) in R2?

Answer: Geometrically, it means that ∆z can be closely approximated by dz for points at and near
(a, b). This isn’t a good way to determine whether a function is differentiable somewhere, though.

Question: How do I know if a function f differentiable at a point (a, b) in R2?

Answer: Using the theorem from class: If the partial derivatives fx and fy exist near (a, b) and are
continuous at (a, b), then f is differentiable at (a, b).

Question: Can’t I take derivatives in directions other than parallel to the (yz)- and (xz)-planes?

Answer: Er...sometimes. Given a function z = f(x, y) and a unit vector u = 〈a, b〉, the directional
derivative Duf of f in the direction of u is given by Duf(x, y) = afx(x, y) + bfy(x, y).

Note that this is a function into which you can plug your favorite coordinates, assuming you’re
given a point.

Question: When can I take the directional derivative?

Answer: By a theorem in class: If f(x, y) is a differentiable function, then f has a directional
derivative in the direction of any unit vector u = 〈a, b〉.

Question: Isn’t there another way to write the directional derivative formula using some upside-down
triangle thing?

Answer: Yep! Recall that the gradient ∇f of f(x, y) is the vector 〈fx, fy〉. This makes the above
formula equivalent to Duf(x, y) = ∇f · u.

Question: In which direction does (a differentiable function) f(x, y) change fastest?

Answer: In the direction of ∇f .

For example, if f(x, y) = x2 + y2, then the direction of maximum change of f at the point (1, 1, 2)
is ∇f(1, 1) = 〈fx(1, 1), fy(1, 1)〉 = 〈2, 2〉, because fx = 2x and fy = 2y.

Question: What is the maximum rate of change of (a differentiable function) f at a point (x0, y0)?

Answer: It’s precisely the magnitude |∇f |.
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So, in the above example, the direction of maximum change was ∇f(1, 1) = 〈fx(1, 1), fy(1, 1)〉 =

〈2, 2〉, and the maximum rate is |〈2, 2〉| =
√

8.

Question: What is the geometric significance of the gradient vector?

Answer: The level curves of a function f(x, y) are the curves of the form f(x, y) = constant.

Given a point P (x0, y0), the gradient vector ∇f(x0, y0) is the vector emanating from P and orthog-
onal to the level curve containing P .

Question: Which points can be local mins or local maxes for a function f?

Answer: Critical points.

Question: How do I know if a point is a critical point of f?

Answer: A point P (x0, y0) is a critical point of f if and only if fx = 0 and fy = 0 at P .

Question: Are all critical points local mins or local maxes?

Answer: No. A critical point P which isn’t a local min or a local max is called a saddle point. For
example, the red point on the below surface is a saddle point.

Question: How do I know if a critical point of a function is a local max, a local min, or a saddle point?

Answer: The second derivative test tells you (most of the time)!
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Question: What is this ::airquotes:: second derivative test ::airquotes:: of which you speak?

Answer: Let (a, b) be a critical point of a function f whose second partial derivatives fxx, fxy, fyx,
and fyy are all continuous near (a, b) and let

D(x, y) = det

(
fxx fxy
fyx fyy

)
= fxxfyy − (fxy)

2 .

Then:

(i) If D(a, b) > 0 and fxx < 0, then (a, b) is an absolute maximum;

(ii) if D(a, b) > 0 and fxx > 0, then (a, b) is an absolute minimum; and

(iii) if D(a, b) < 0, then (a, b) is a saddle point. Moreover:

(iv) If D(a, b) = 0, then the second derivative test is inconclusive and you have to use a
different method to determine the answer you want.

Question: Are there any theorems that tell me about absolute maxes and absolute mins?

Answer: Indeed, it’s called the extreme value theorem!

Question: Go on....

Answer: The extreme value theorem is as follows: If f(x, y) is a function which is continuous on a
closed, bounded region Σ in R2, then f attains both an absolute max and absolute min on Σ. Moreover,
the absolute extrema of f on Σ either occur at critical points within Σ or on the boundary of Σ.

Question: What are closed and/or bounded sets?

Answer: A set Σ in R2 is closed if it contains all its boundary points; it is bounded if it can be
enclosed in a disk of finite radius. The below figures show this, graphically.

Figure 1
(Left to Right) 1. Not Closed + Not Bounded; 2. Closed + Not Bounded; 3. Not Closed +

Bounded; 4. Closed + Bounded. Note: The outside boxes are not included in any of the regions.
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Question: Great! Now, can I maximize/minimize a function subject to ≥ 1 constraints? If so, how?

Short Answer: You can, using Lagrange Multipliers!

Longer Answer: If you have a two- (or three-)variable function f(x, y) (or f(x, y, z)) subject to
one constraint g(x, y) = constant (or g(x, y, z) = constant), then ∇f = λ∇g for some real number λ.
Assuming f is two-variable, this yields three equations:

(i) fx = λgx

(ii) fy = λgy

(iii) g(x, y) = constant

Now: Solve these for points (x, y); evaluate f(x, y) for all those points; and pick out which of the
f(x, y)-values are largest and smallest. These are the maxes and mins, respectively.

Likewise, if you have a three-variable function f(x, y, z) subject to two constraints g(x, y, z) =
constant and h(x, y, z) = constant, you have ∇f = λ∇g + µ∇h. Now, this yields five equations:

(i) fx = λgx + µhx

(ii) fy = λgy + µhy

(iii) fz = λgz + µhz

(iv) g(x, y, z) = constant

(v) h(x, y, z) = constant

Now, you do the same as above: Solve these for points (x, y, z); evaluate f(x, y, z) for all those points;
and pick out which of the f(x, y, z)-values are largest and smallest. These are the maxes and mins,
respectively.

Question: How is the Lagrange thing related to the absolute max/min thing above?

Answer: By changing the two-variable constraint g(x, y) = constant into g(x, y) ≤ constant, you
may end up with a closed, bounded region in R2.

If so, and if f(x, y) is continuous on the region g(x, y) ≤ constant, then we can use the extreme
value theorem to know:

(a) f attains absolute maxes and mins on that region; and

(b) these maxes/mins lie either at critical points of the region or on the region’s boundary.

. Finally, by noting that the Lagrange multiplier method has already checked the boundary of this
region, we only need to compare the f(x, y) values we got above to the values of f at critical points
living inside the region to find which are absolute maxes and absolute mins.
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