Exam Review

1. Sketch each of the following regions and write each as the type designated. There should be no integrals in your answers!
(a) $D=\left\{(x, y):-\sqrt{4-x^{2}} \leq y \leq \sqrt{4-x^{2}},-2 \leq x \leq 2\right\}$; as a polar rectangle
(b) $T_{1}=$ the triangle in \mathbb{R}^{2} with vertices $(0,0),(0,3),(3,3)$; as a Type I region
(c) $T_{2}=$ the same triangle as in (a); as a Type II region
(d) $D=$ the annular region in the upper half plane, bounded between the lines $y=x$ and $y=-x$ and the circles $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=9$; as a polar rectangle
2. (a) Use double integrals to find the volume of each of the solids described below.
i) The solid that lies under the paraboloid $z=x^{2}+y^{2}$ and above the region D in the $x y$-plane bounded by the line $y=2 x$ and the parabola $y=x^{2}$.
ii) The solid under the surface $z=x y$ and above the triangle with vertices $(1,1),(6,1)$, and $(1,3)$.
iii) The solid inside the sphere $x^{2}+y^{2}+z^{2}=9$ and outside the cylinder $x^{2}+y^{2}=3$.
(b) For each of the regions described in (a), set up and evaluate the integral you would use to get the volume of the region using the other order of integration.
3. Express each of the following regions in polar coordinates.
(a) The bottom half of the disk of radius 3 , centered at $(0,0)$.
(b) The left half of the disk of radius 1 , centered at $(-1,0)$.
(c) The area in the upper half plane inside the circle $x^{2}+y^{2}=1$, between the lines $y=x$ and $y=-x$, and outside the 4-petaled rose $\left(x^{2}+y^{2}\right)^{3}=\left(x^{2}-y^{2}\right)^{2}$. Hint: $\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta$.
(d) The annular region lying between the circles $x^{2}+y^{2}=2$ and $x^{2}+y^{2}=5$.
4. Find the surface area of the part of the paraboloid $z=16-x^{2}-y^{2}$ that lies under the plane $z=9$ and above the plane $z=4$.
5. Evaluate each of the following triple integrals, changing coordinate systems as necessary.
(a) $\iiint_{E} 6 x y d V$, where E lies under the plane $z=1+x+y$ and above the region in the $x y$-plane bounded by the curves $y=\sqrt{x}, y=0$, and $x=1$.
(b) $\iiint_{E} d V$, where E is the solid enclosed by the cylinder $x^{2}+z^{2}=4$ and the planes $y=-1$ and $y+z=4$.
(c) $\iiint_{E}(x+y+z) d V$, where E is the solid in the first octant that lies under the paraboloid $z=4-x^{2}-y^{2}$.
(d) $\iiint_{H}\left(9-x^{2}-y^{2}\right) d V$, where H is the solid hemisphere $x^{2}+y^{2}+z^{2} \leq 9, z \geq 0$.
6. (a) Use a triple integral to find the volume of the tetrahedron T bounded by the planes $x=0$, $y=0, z=0$, and $x+y+z=2$
(b) Set up and evaluate the other five triple integrals to representing the volume of T (so altogether, you should have evaluated six integrals - one each for $d x d y d z, d x d z d y, d y d x d z, d y d z d x$, $d z d x d y$, and $d z d y d x$ - and you should get the same volume for each).

Hint: See the "Dummit" .pdf file mentioned in the Links, etc. tab on the course webpage; in particular, se pp10-12 for a really good explanation of how to do problems like this one.
7. Rewrite each of the rectangular iterated integrals in the coordinate system specified. Do not integrate!
(a) $\int_{-3}^{3} \int_{-\sqrt{9-y^{2}}}^{\sqrt{9-y^{2}}} e^{x^{2}+y^{2}} d x d y$; in polar coordinates
(b) $\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \int_{x^{2}+y^{2}}^{3-x^{2}-y^{2}} \sqrt{x^{2}+y^{2}} d z d y d x$; in cylindrical coordinates.
(c) $\int_{-3}^{3} \int_{-\sqrt{9-y^{2}}}^{\sqrt{9-y^{2}}} \int_{0}^{\sqrt{9-x^{2}-y^{2}}} z \sqrt{x^{2}+y^{2}+z^{2}} d z d x d y$; in spherical coordinates.
8. (a) Compute the Jacobian for each of the transformations listed.
i) From rectangular coordinates to polar coordinates in \mathbb{R}^{2}.
ii) From rectangular coordinates to cylindrical coordinates in \mathbb{R}^{3}.
iii) From rectangular coordinates to spherical coordinates in \mathbb{R}^{3}.
(b) Use your answer for each of the transformations in part (a) to derive the formula for double and/or triple integrals (double integrals for \mathbb{R}^{2} and triple in \mathbb{R}^{3}) of a function $f(x, y)$ and/or $f(x, y, z)$ (the former for \mathbb{R}^{2} and the latter for \mathbb{R}^{3}) over a region D in \mathbb{R}^{2} and/or E in \mathbb{R}^{3}. the result from part (a) to derive the formula for triple integration in spherical coordinates.

