Exam 4

MAC 2313-Calculus III, Spring 2017
(Neatly!) Print Name: \qquad

Read all of what follows carefully before starting!

1. This test has $\mathbf{5}$ problems (9 parts total) and is worth $\mathbf{1 0 0}$ points. Please be sure you have all the questions before beginning!
2. The exam is closed-note and closed-book. You may not consult with other students, and no calculators may be used!
3. Show all work clearly in order to receive full credit. Points will be deducted for incorrect work, and unless otherwise stated, no credit will be given for a correct answer without supporting calculations. No work $=$ no credit! (unless otherwise stated)
4. You may use appropriate results from class and/or from the textbook as long as you fully and correctly state the result and where it came from.

- If you use a result/theorem, you have to state which result you're using and explain why you're able to use it!

5. You do not need to simplify results, unless otherwise stated.
6. There is scratch paper at the end of the exam; you may also use the backs of pages or get more scratch paper from me.

Question	$1_{(20 \mathrm{pts})}$	2 (10 pts)	3 (35 pts)	$4_{(20 \mathrm{pts})}$	$5_{(15 \mathrm{pts})}$	Total (100 pts)
Points						

Do not write in these boxes! If you do, you get 0 points for those questions!

1. (10 pts ea.) Compute each of the following line integrals.
(a) $\oint_{C}\left(x^{2}+y^{2}+z^{2}\right) d s$, where C is the curve parametrized by

$$
x(t)=t \quad y(t)=\cos 2 t \quad z(t)=\sin 2 t \quad(0 \leq t \leq 2 \pi)
$$

Solution:

Part (b) is on the next page
(b) $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}(x, y, z)=\sin x \mathbf{i}+\cos y \mathbf{j}+x z \mathbf{k}$ and where C is given by the vector function

$$
\mathbf{r}(t)=t^{2} \mathbf{i}+t^{3} \mathbf{j}+t^{2} \mathbf{k} \quad(0 \leq t \leq 1)
$$

Solution:

2. (10 pts) Use Green's theorem to evaluate

$$
\int_{C} y d x+x^{2} y d y
$$

where C is the quarter-circular curve shown below.

Solution:

3. Let $\mathbf{F}(x, y, z)=e^{x} \sin (y z) \mathbf{i}+z e^{x} \cos (y z) \mathbf{j}+y e^{x} \cos (y z) \mathbf{k}$.
(a) (10 pts) Show that \mathbf{F} is conservative.

Solution:

Part (b) is on the next page
(b) (15 pts) Find a function f such that $\mathbf{F}=\nabla f$.

Solution:

Part (c) is on the next page
(c) (10 pts) Compute $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where C is the Cthulhu curve shown below. Justify your answer.

Solution:

4. Let F be torus surface defined parametrically by the vector function

$$
\mathbf{r}(u, v)=\langle(3+\sin v) \cos u,(3+\sin v) \sin u, \cos v\rangle \quad(0 \leq u \leq 2 \pi, 0 \leq v \leq 2 \pi)
$$

(a) (10 pts) Find the equation of the plane tangent to F at the point $(u, v)=\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$.

Solution:

Part (b) is on the next page
(b) (10 pts) Find the surface area of F.

Solution:
5. (15 pts) Find the flux of $\mathbf{F}=z e^{x y} \mathbf{i}-3 z e^{x y} \mathbf{j}+x y \mathbf{k}$ across the outwardly-oriented parallelogram F having parametric equations

$$
x=u+v \quad y=u-v \quad z=1+2 u+v \quad(0 \leq u \leq 2,0 \leq v \leq 1)
$$

Solution:

Scratch Paper

