Exam 4 MAC 2313—Calculus III, Spring 2017

(NEATLY!) PRINT NAME: _____

Read all of what follows carefully before starting!

- 1. This test has **5 problems** (9 parts total) and is worth **100 points**. *Please be sure you have all the questions before beginning!*
- 2. The exam is closed-note and closed-book. You may **not** consult with other students, and **no** calculators may be used!
- 3. Show all work clearly in order to receive full credit. Points will be deducted for incorrect work, and unless otherwise stated, no credit will be given for a correct answer without supporting calculations. No work = no credit! (unless otherwise stated)
- 4. You may use appropriate results from class and/or from the textbook <u>as long as you</u> fully and correctly state the result and where it came from.
 - If you use a result/theorem, you have to state *which* result you're using and explain *why* you're able to use it!
- 5. You **do not** need to simplify results, unless otherwise stated.
- 6. There is scratch paper at the end of the exam; you may also use the backs of pages or get more scratch paper from me.

Question	1 (20 pts)	2 (10 pts)	3 (35 pts)	$4~(\rm 20~pts)$	$5~{\rm (15~pts)}$	Total (100 pts)
Points						

Do not write in these boxes! If you do, you get 0 points for those questions!

1. $(10 \ pts \ ea.)$ Compute each of the following line integrals.

(a) $\oint_C (x^2 + y^2 + z^2) ds$, where C is the curve parametrized by

x(t) = t $y(t) = \cos 2t$ $z(t) = \sin 2t$ $(0 \le t \le 2\pi).$

SOLUTION:

Part (b) is on the next page

(b) $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x, y, z) = \sin x \, \mathbf{i} + \cos y \, \mathbf{j} + xz \, \mathbf{k}$ and where *C* is given by the vector function

$$\mathbf{r}(t) = t^2 \mathbf{i} + t^3 \mathbf{j} + t^2 \mathbf{k}$$
 $(0 \le t \le 1).$

SOLUTION:

2. $(10 \ pts)$ Use Green's theorem to evaluate

$$\int_C y\,dx + x^2 y\,dy,$$

where ${\cal C}$ is the quarter-circular curve shown below.

3. Let $\mathbf{F}(x, y, z) = e^x \sin(yz) \mathbf{i} + ze^x \cos(yz) \mathbf{j} + ye^x \cos(yz) \mathbf{k}$.

(a) $(10 \ pts)$ Show that **F** is conservative.

SOLUTION:

Part (b) is on the next page

(b) (15 pts) Find a function f such that $\mathbf{F} = \nabla f$.

SOLUTION:

Part (c) is on the next page

(c) (10 pts) Compute $\int_C \mathbf{F} \cdot d\mathbf{r}$, where C is the Cthulhu curve shown below. Justify your answer.

SOLUTION:

7

4. Let F be torus surface defined parametrically by the vector function

 $\mathbf{r}(u,v) = \langle (3+\sin v)\cos u, (3+\sin v)\sin u, \cos v \rangle \qquad (0 \le u \le 2\pi, \ 0 \le v \le 2\pi).$

(a) (10 pts) Find the equation of the plane tangent to F at the point $(u, v) = \left(\frac{\pi}{2}, \frac{\pi}{2}\right)$.

Solution:

Part (b) is on the next page

(b) $(10 \ pts)$ Find the surface area of F.

SOLUTION:

5. (15 pts) Find the flux of $\mathbf{F} = ze^{xy}\mathbf{i} - 3ze^{xy}\mathbf{j} + xy\mathbf{k}$ across the outwardly-oriented parallelogram F having parametric equations

x = u + v y = u - v z = 1 + 2u + v $(0 \le u \le 2, 0 \le v \le 1).$

SOLUTION:

Scratch Paper