Feb 2, 2017

Exam 1

MAC 2313—Calculus III, Spring 2017

(Neatly!) Print Name: \qquad

Read all of what follows carefully before starting!

1. This test has $\mathbf{4}$ problems (14 parts total) and is worth $\mathbf{1 0 0}$ points. Please be sure you have all the questions before beginning!
2. The exam is closed-note and closed-book. You may not consult with other students.
3. No calculators may be used on this exam!
4. Show all work clearly in order to receive full credit. Points will be deducted for incorrect work, and unless otherwise stated, no credit will be given for a correct answer without supporting calculations. No work = no credit! (unless otherwise stated)
5. You may use appropriate results from class and/or from the textbook as long as you fully and correctly state the result and where it came from.
6. You do not need to simplify results, unless otherwise stated.
7. There is scratch paper at the end of the exam; you may also use the backs of pages or get more scratch paper from me.

Question	$1_{(16 \mathrm{pts})}$	$2_{(25 \mathrm{pts})}$	$3_{(35 \mathrm{pts})}$	$4_{\text {(24 pts }}$	Total $\left.{ }_{(100} \mathrm{pts}\right)$
Points					

Do not write in these boxes! If you do, you get 0 points for those questions!

1. (4 pts ea.) Let $\mathbf{v}=\langle 2,-1,1\rangle$ and $\mathbf{w}=3 \mathbf{i}+\mathbf{j}-\mathbf{k}$. Compute each of the following or state that it does not exist; if it does not exist, clearly explain why.
(a) $|\mathbf{v}-\mathbf{w}|$
(b) $|\mathbf{v}-\mathbf{w}| \times \mathbf{w}$
(c) $\operatorname{proj}_{\mathbf{w}} \mathbf{v}$
(d) The angle between \mathbf{w} and $\mathbf{v}-\operatorname{proj}_{\mathbf{w}} \mathbf{v}$.
2. (a) (15 pts) Find the equation of the plane containing the vectors $\mathbf{a}=\langle-1,-1,1\rangle$ and $\mathbf{b}=\langle 1,2,-2\rangle$ and passing through the point $(0,0,2)$.

Solution:

Part (b) is on the next page
(b) (10 pts) Find a vector function that represents the curve of intersection of the cylinder $x^{2}+y^{2}=1$ with the plane from part (a).

Solution:

3. (5 pts ea.) Let $\mathbf{r}(t)=\left\langle e^{t}, e^{t} \sin t, e^{t} \cos t\right\rangle$ and note that:

$$
\begin{aligned}
\mathbf{r}^{\prime}(t) & =\left\langle e^{t}, e^{t} \cos t+e^{t} \sin t, e^{t} \cos t-e^{t} \sin t\right\rangle, \\
\mathbf{r}^{\prime \prime}(t) & =\left\langle e^{t}, 2 e^{t} \cos t,-2 e^{t} \sin t\right\rangle, \text { and } \\
\left|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right| & =\sqrt{6} e^{2 t} .
\end{aligned}
$$

Find each of the following.
(a) The domain of \mathbf{r}
(b) The velocity, acceleration, and speed of a particle with position vector $\mathbf{r}(t)$
(c) The unit tangent vector $\mathbf{T}(t)$ of \mathbf{r}
(d) The unit normal vector $\mathbf{N}(t)$ of \mathbf{r}
(e) The curvature $\kappa(t)$ of \mathbf{r}

Part (f) is on the next page
(f) The tangential component of the acceleration $\mathbf{a}(t)$
(g) The normal component of $\mathbf{a}(t)$
4. (4 pts ea.) Match the following cylinder/quadric surface graphs with the equations which define them by writing (i)-(vi) beneath the appropriate equation(s). You do not need to show work!

(iv)

(ii)

(v)

(iii)

(vi)
(a) $\frac{3}{2} x-9 y=2 z-1$
(c) $\frac{x^{2}}{4}+\frac{y^{2}}{2}=\frac{z}{4}$
(e) $z=x^{2}-\frac{1}{2}$
(b) $\frac{x^{2}}{0.8}-\frac{y^{2}}{0.45}=\frac{z}{2}$
(d) $\frac{x^{2}}{0.45}+\frac{y^{2}}{0.8}-\frac{z^{2}}{2}=1$
(f) $\frac{x^{2}}{4}+\frac{y^{2}}{2}+z^{2}=1$

Bonus: Let $\mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle, \mathbf{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$, and $\mathbf{c}=\left\langle c_{1}, c_{2}, c_{3}\right\rangle$ be arbitrary vectors in \mathbb{R}^{3}. Prove each of the following.
(a) (3 pts) $\mathbf{i} \cdot \mathbf{j}=\mathbf{j} \cdot \mathbf{k}=\mathbf{k} \cdot \mathbf{i}=0$
(b) (3 pts) $\mathbf{i} \cdot \mathbf{i}=\mathbf{j} \cdot \mathbf{j}=\mathbf{k} \cdot \mathbf{k}=1$
(c) (3 pts) The vector $\mathbf{b}-\operatorname{proj}_{\mathbf{a}} \mathbf{b}$ is orthogonal to \mathbf{a}
(d) $(6 \mathrm{pts}) \mathbf{a} \times(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \cdot \mathbf{c}) \mathbf{b}-(\mathbf{a} \cdot \mathbf{b}) \mathbf{c}$

Bonus: Below is the graph of the space curve \mathcal{C} corresponding to $\mathbf{r}(t)=\langle t \cos t, t, t \sin t\rangle$ for $0 \leq t \leq 100$.

(a) (2 pts) Intuitively, do you think the curvature of \mathcal{C} gets larger, gets smaller, or remains constant as t increases from 0 to 100? Explain.
(b) (5 pts) Prove that the curvature of \mathcal{C} is equal to

$$
\kappa(t)=\frac{\sqrt{t^{4}+5 t^{2}+8}}{\left(t^{2}+2\right)^{3 / 2}}
$$

(c) (3 pts) Based on (b), what happens to the curvature of \mathcal{C} as $t \rightarrow \infty$?

Scratch Paper

