MAC 2312 — Homework 6

- 1. You don't have to go home but you can't (and shouldn't) stay here (...because there's nothing to see...).
- 2. Solution: $\sum_{i=2}^{6} a_i \leq \int_1^6 f(x) dx \sum_{i=1}^5 a_i$.
- 3. (a) Diverge

(d) Converge

- (b) Converge (e) Converge
- (c) Converge

(f) Converge

4. DO NOT WORRY ABOUT THIS PROBLEM FOR THE EXAM!

- (a) No p. (c) p < -1.
- (b) p > 1. (d) No p.
- 5. Below, "regular" means the (regular) comparison test is "easier" (more straightforward?) while "limit" means the same thing for the limit comparison test.
 - (a) Diverge Limit
 (b) Diverge Regular
 (c) Diverge Either
 (d) Converge Limit
 (e) Converge Neither; skip this one!
 (f) Diverge Either, but it's hardish
 (g) Converge Either
 (h) Converge Either, but it's hardish (again)

- 6. (a) Diverge both inconclusive; $a_n \neq 0$
 - (b) Diverge root inconclusive; $a_n \not\rightarrow 0$
 - (c) Converge ratio
 - (d) Diverge root inconclusive; $a_n \not\rightarrow 0$
- 7. (a) Diverge comparison with $\sum 1/n$ works
 - (b) Converge *p*-test with $p = \sqrt{2} > 1$
 - (c) Diverge alternating series test; ratio test should work too
 - (d) Converge root test
 - (e) Converge limit comparison test with $b_n = 1/n^{3/2}$
 - (f) Diverge $-a_n \not\rightarrow 0$
 - (g) Converge ratio test; (regular/limit) comparison test if you're clever
 - (h) Diverge write as $\sum \frac{1}{5+3(n-1)}$, then limit comparison with $b_n = 1/n$
 - (i) Diverge $-a_n \not\rightarrow 0$; ratio test will also work; maybe alternating series too?
 - (j) Converge integral test (it's a tricky integral); note that root+ratio test are both inconclusive
 - (k) Converge geometric series times two
 - (l) Diverge comparison with $b_n = n/4^{-n}$ is easiest; ratio test will also work
 - (m) Converge alternating series test

- (e) Converge both inconclusive; *p*-test
- (f) Diverge ratio
- (g) Diverge root (hard); also, $a_n \not\to 0$
- (h) Converge ratio

- (n) Diverge $la_n \not\rightarrow 0$
- (o) Converge write as $\sum a_n$ for $a_n = \sin 1/n^2$; $\sum |a_n|$ and use comparison test with $\sum 1/n^2$
- (p) Converge alternating series test

8. (a) Skip this problem

- (b) Repeat the same procedure we did in class today; **DEFINITELY KNOW HOW TO DO THIS ONE!**
- (c) This is a comparison test problem where I've essentially shown you which comparison(s) to do; try this, but if you get stuck, skip it.