MAC 2312 - Homework 5 - SOLUTIONS

1. Nothin' to see here, folks....
2. (a) \leftrightarrow (iii); (b) \leftrightarrow (i); (c) \leftrightarrow (iv); (d) \leftrightarrow (ii)
3. $\{1,2,4, \sqrt{21}, \sqrt{41}, \sqrt{78}, \sqrt{140}, \sqrt{259}\}$
4. (a) Converges to 12
(e) Converges to $\tan ^{-1}(1)=\frac{\pi}{4}$
(b) Diverges to $-\infty$
(f) Converges to $\arccos (1 / 2)=\pi / 3$
(c) Converges to 1
(g) Converges to 1
(d) Diverges to $-\infty$
(h) Converges to 0
5. Note the inductive formulation $a_{1}=\sqrt{2}$ and $a_{n+1}=\sqrt{2 a_{n}}, n \geq 1$.
(a) Assume $a_{n}<2$. Then $a_{n+1} \stackrel{\text { def }}{=} \sqrt{2 a_{n}}<\sqrt{2 \cdot 2}$, by assumption. Hence, $a_{n+1}<\sqrt{4}=2$.
(b) Assume again that $a_{n}<2$. Then $a_{n+1} \stackrel{\text { def }}{=} \sqrt{2 a_{n}}>\sqrt{a_{n} \cdot a_{n}}$, (again) by assumption. Thus, $a_{n+1}>\sqrt{a_{n}^{2}}=\left|a_{n}\right|=a_{n}$, since the terms of $\left\{a_{n}\right\}$ are clearly non-negative.
(c) By (a), the sequence is bounded; by (b), the sequence is monotone. All bounded, monotone sequences have a limit!
(d) Suppose $a_{n} \rightarrow L$. Then $a_{n+1} \rightarrow L$ as well, and hence $L=\sqrt{2 L}$. Solving for $L: L=\sqrt{2 L}$ implies $L^{2}=2 L$ implies $L^{2}-2 L=0$ implies $L(L-2)=0$. Hence, either $L=0$ or $L=2$, and because the sequence is increasing from $a_{1}=\sqrt{2}, L \neq 0$. Thus, $a_{n} \rightarrow 2$.
(e) You do this! The recursive definition is $a_{1}=\sqrt{3}$ and $a_{n+1}=\sqrt{3 a_{n}}, n \geq 1$.
(f) You do this! The recursive definition is $a_{1}=\sqrt{2}$ and $a_{n+1}=\sqrt{2+a_{n}}, n \geq 1$.
6. Let $a_{n}=\frac{n}{n+1}$. Find a number M such that:
(a) $\left|a_{n}-1\right| \leq 0.001$ for $n \geq M$.

Solution: Set up the absolute value inequality $-0.001 \leq a_{n}-1 \leq 0.001$ and note that $a_{n}=\frac{n}{n+1}$. Plugging in for a_{n} in the absolute value inequality yields

$$
-0.001 \leq \frac{n}{n+1}-1 \leq 0.001
$$

and solving with respect to the \geq inequality (since we want $n \geq M$ for some M) yields

$$
-0.001 \leq \frac{n}{n+1}-1 \Longrightarrow 0.999 \leq \frac{n}{n+1} \Longrightarrow 0.999(n+1) \leq n
$$

Solving for n yields $n \geq 999$, so $M=999$ will do the trick.
(b) $\left|a_{n}-1\right| \leq 10^{-5}$ for $n \geq M$.

Solution: You do this! The answer is $n \geq 99,999$.
7. (a) $a_{n}=\left(\frac{5}{2}\right)^{n-1} \longleftrightarrow$ series $=\sum_{n=1}^{\infty}\left(\frac{5}{2}\right)^{n-1}$.
(b) $a_{n}=\frac{1+\frac{1+(-1)^{n+1}}{2}}{n^{2}+1} \longleftrightarrow$ series $=\sum_{n=1}^{\infty} \frac{1+\frac{1+(-1)^{n+1}}{2}}{n^{2}+1}$
8. (a) $s_{2}=-\frac{1}{2} ; s_{4}=-\frac{7}{12} ; s_{6}=-\frac{37}{60}$
(c) $s_{2}=-\frac{14}{3} ; s_{4}=-\frac{44}{5} ; s_{6}=-\frac{90}{7}$
(b) $s_{2}=\frac{3}{2} ; s_{4}=\frac{41}{24} ; s_{6}=\frac{1237}{720}$
(d) $s_{2}=\frac{42}{121} ; s_{4}=\frac{5460}{14641} ; s_{6}=\frac{664062}{1771561}$
9. (a) $\frac{1}{9}$
(c) $\frac{217}{999}$
(b) $\frac{13}{99}$
(d) $\frac{1234}{9999}$
10. (a) Series notation: $\sum_{k=3}^{\infty} \frac{1}{k(k-1)}$;
partial fraction: $\frac{1}{k(k-1)}=\frac{1}{k-1}-\frac{1}{k}$;
partial sum: $s_{n}=\frac{1}{2}-\frac{1}{n}$ for $n \geq 3$;
total sum: $\lim _{n \rightarrow \infty} s_{n}=1 / 2$.
(b) Series notation: $\sum_{k=1}^{\infty} \frac{1}{(2 k-1)(2 k+1)}$;
partial fraction: $\frac{1}{(2 k-1)(2 k+1)}=\frac{1 / 2}{2 k-1}-\frac{1 / 2}{2 k+1}$;
partial sum: $s_{n}=\frac{1}{2}-\frac{1}{2(2 n+1)}$
total sum: $\lim _{n \rightarrow \infty} s_{n}=1 / 2$.
(c) Series notation: $\sum_{k=1}^{\infty} \frac{1}{k(k+1)(k+2)}$;
partial fraction: $\frac{1}{k(k+1)(k+2)}=\frac{1 / 2}{k}-\frac{1}{k+1}+\frac{1 / 2}{k+2}$; partial sum: $s_{n}=\frac{n^{2}+3 n}{4\left(n^{2}+3 n+2\right)}$ total sum: $\lim _{n \rightarrow \infty} s_{n}=1 / 4$.
(d) Series notation: $\sum_{k=1}^{\infty} \frac{1}{k^{2}+3 k+2}=\sum_{k=1}^{\infty} \frac{1}{(k+2)(k+1)}$; partial fraction: $\frac{1}{(k+2)(k+1)}=\frac{1}{k+1}-\frac{1}{k+2}$; partial sum: $s_{n}=\frac{1}{2}-\frac{1}{n+2}$ total sum: $\lim _{n \rightarrow \infty} s_{n}=1 / 2$.
11. Determine the sum of each of the following series or state that the series does not exist converge.
(a) Does not converge: $a_{n} \rightarrow 1$ as $n \rightarrow \infty$
(b) Does not converge: $a_{n} \rightarrow \pm \infty$ as $n \rightarrow \infty$
(c) Does not converge: $a_{n} \rightarrow \pm 1$ as $n \rightarrow \infty$
(d) Geometric series: $a=(4 / 5)^{3}, r=4 / 5$:

Converges to $\frac{(4 / 5)^{3}}{1-4 / 5}=\frac{64}{25}$.
(e) Does not converge: $a_{n} \nrightarrow 0$ as $n \rightarrow \infty$
(f) Geometric series: $a=e^{3}, r=e^{-2}$:

Converges to $\frac{e^{3}}{1-e^{-2}}=\frac{64}{25}$.
(g) Converges to $-\frac{839}{1344}$;
this is definitely not an exam-level question, but if you want to see it worked out, don't hesitate to ask!
(h) Geometric series: $a=25 / 9, r=3 / 5$:

Converges to $\frac{25 / 9}{1-(3 / 5)}=\frac{125}{18}$
(i) Geometric series: $a=7 / 8, r=-7 / 8$:

Converges to $\frac{7 / 8}{1-(-7 / 8)}=\frac{7}{15}$
(j) Does not converge: p-test with $p=1 / 2$.
12. (a) Write the first three terms of the sequence a_{n}.

Solution: $a_{1}=-1 / 2 ; a_{2}=2 / 4 ; a_{3}=-6 / 8$.
(b) Write the first three terms of the subsequence b_{n} where, for each $n, b_{n}=a_{2 n}$. Solution: $b_{1}=a_{2}=2 / 4 ; b_{2}=a_{4}=24 / 16 ; b_{3}=a_{6}=720 / 64$.
(c) Write the first three terms of the subsequence c_{n} where, for each $n, c_{n}=\left(a_{n}+a_{n+1}\right) / b_{n}$. Solution: $c_{1}=\left(a_{1}+a_{2}\right) / b_{1}=0 ; c_{2}=\left(a_{2}+a_{3}\right) / b_{2}=-1 / 6 ; c_{3}=\left(a_{3}+a_{4}\right) / b_{3}=1 / 15$
13. (a) Is increasing; is bounded below; is not bounded above. Solution: $a_{n}=n^{2}$
(b) Is increasing; is bounded above; is not bounded below; converges.

Solution: No such sequence exists: All convergent sequences are bounded (this is hard).
(c) Is decreasing; is bounded neither above nor below; converges.

Solution: No such sequence exists: All convergent sequences are bounded (this is hard).
(d) Is neither increasing nor decreasing; is bounded; converges to 4 .

Solution: $a_{n}=4+\frac{(-1)^{n}}{n}$
(e) Is neither increasing nor decreasing; is not bounded; converges.

Solution: No such sequence exists: All convergent sequences are bounded (this is hard).
(f) Is monotone; is bounded; converges to 6 and -12 simultaneously.

Solution: No such sequence exists: The limit of a convergent sequence is unique.
(g) Does not converge but has a subsequence which does converge.

Solution: $a_{n}=(-1)^{n}=\{-1,1,-1,1,-1,1, \ldots\}$. The subsequences $a_{2 n-1}=\{-1,-1,-1, \ldots\}$ and $a_{2 n}=\{1,1,1, \ldots\}$ both converge.
(h) Converges, but has a subsequence which does not converge.

Solution: No such sequence exists: Every subsequence of a convergent sequence converges.
(i) Converges, and has a subsequence which converges to a different limit.

Solution: No such sequence exists: Every subsequence of a convergent sequence converges to the same limit as the larger sequence.
(j) Has two different subsequences which converge to -7 and to 7 , respectively.

Solution: $a_{n}=(-7)^{n}=\{-7,7,-7,7, \ldots\}$.
(k) Has nine different subsequences which converge to $1,2,3, \ldots, 9$ respectively.

Solution: $a_{n}=\{1,2,3,4,5,6,7,8,9,1,2,3,4,5,6,7,8,9, \ldots\}$. For $k=1,2,3, \ldots, 9$, the subsequence $a_{k n}=\{k, k, k, \ldots\}$ converges to k.
(l) Diverges; has a subsequence which is increasing; has a different subsequence which diverges. Solution: $a_{n}=(-1)^{n} n$. The subsequence $a_{2 n}=2 n$ is increasing and the subsequence $a_{2 n-1}=-(2 n-1)$ is a different sequence which diverges.
14. (a) Both a_{n} and b_{n} converge but $\left\{a_{n}+b_{n}\right\}$ fails to converge.

Solution: No such sequences exists: The sum of convergent sequences converges.
(b) Neither a_{n} nor b_{n} converge but $a_{n}-b_{n}$ converges.

Solution: $a_{n}=n, b_{n}=n-1 \Longrightarrow a_{n}-b_{n}=n-(n-1)=1$ converges to 1 .
(c) a_{n} converges, b_{n} diverges, and a_{n} / b_{n} converges.

Solution: $a_{n}=1, b_{n}=n \Longrightarrow a_{n} / b_{n}=1 / n$ converges to 0 .
(d) $a_{n} \rightarrow L, b_{n} \rightarrow L$, and $a_{n} / b_{n} \rightarrow L$.

Solution: $a_{n}=1, b_{n}=1-1 / n \rightarrow 1 \Longrightarrow a_{n} / b_{n}=1 /(1-1 / n)$ also converges to 1 .
(e) a_{n} diverges, $b_{n} \rightarrow \sqrt{2}$, and $a_{n} b_{n} \rightarrow 19$.

Solution: No such sequences exist.
(f) $\sum_{n=1}^{\infty} a_{n}$ diverges and $\sum_{n=1}^{\infty} b_{n}$ diverges but $\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)$ converges.

Solution: $a_{n}=-n, b_{n}=n$.
(g) $\sum_{n=1}^{\infty} a_{n}$ converges and $\sum_{n=1}^{\infty} b_{n}$ converges but $\sum_{n=1}^{\infty} \frac{a_{n}}{b_{n}}$ diverges.

Solution: $a_{n}=1 / n^{3}, b_{n}=1 / n^{2} . \sum a_{n}$ and $\sum b_{n}$ both converge as p-series. However,

$$
\frac{a_{n}}{b_{n}}=\frac{1 / n^{3}}{1 / n^{2}}=\frac{1}{n}
$$

and $\sum 1 / n$ diverges.

