MAC 2312 — Homework 5

——SOLUTIONS——

- 1. Nothin' to see here, folks....
- 2. (a) \leftrightarrow (iii); (b) \leftrightarrow (i); (c) \leftrightarrow (iv); (d) \leftrightarrow (ii)
- 3. $\{1, 2, 4, \sqrt{21}, \sqrt{41}, \sqrt{78}, \sqrt{140}, \sqrt{259}\}$
- 4. (a) Converges to 12
- verges to 12 (e) Converges to $\tan^{-1}(1) = \frac{\pi}{4}$
 - (b) Diverges to $-\infty$

(f) Converges to $\arccos(1/2) = \pi/3$

(c) Converges to 1

(g) Converges to 1

(d) Diverges to $-\infty$

- (h) Converges to 0
- 5. Note the inductive formulation $a_1 = \sqrt{2}$ and $a_{n+1} = \sqrt{2a_n}$, $n \ge 1$.
 - (a) Assume $a_n < 2$. Then $a_{n+1} \stackrel{\text{def}}{=} \sqrt{2a_n} < \sqrt{2 \cdot 2}$, by assumption. Hence, $a_{n+1} < \sqrt{4} = 2$.
 - (b) Assume again that $a_n < 2$. Then $a_{n+1} \stackrel{\text{def}}{=} \sqrt{2a_n} > \sqrt{a_n \cdot a_n}$, (again) by assumption. Thus, $a_{n+1} > \sqrt{a_n^2} = |a_n| = a_n$, since the terms of $\{a_n\}$ are clearly non-negative.
 - (c) By (a), the sequence is bounded; by (b), the sequence is monotone. All bounded, monotone sequences have a limit!
 - (d) Suppose $a_n \to L$. Then $a_{n+1} \to L$ as well, and hence $L = \sqrt{2L}$. Solving for L: $L = \sqrt{2L}$ implies $L^2 = 2L$ implies $L^2 2L = 0$ implies L(L-2) = 0. Hence, either L = 0 or L = 2, and because the sequence is increasing from $a_1 = \sqrt{2}$, $L \neq 0$. Thus, $a_n \to 2$.
 - (e) You do this! The recursive definition is $a_1 = \sqrt{3}$ and $a_{n+1} = \sqrt{3a_n}$, $n \ge 1$.
 - (f) You do this! The recursive definition is $a_1 = \sqrt{2}$ and $a_{n+1} = \sqrt{2 + a_n}$, $n \ge 1$.

- 6. Let $a_n = \frac{n}{n+1}$. Find a number M such that:
 - (a) $|a_n 1| \le 0.001$ for $n \ge M$.

Solution: Set up the absolute value inequality $-0.001 \le a_n - 1 \le 0.001$ and note that $a_n = \frac{n}{n+1}$. Plugging in for a_n in the absolute value inequality yields

$$-0.001 \le \frac{n}{n+1} - 1 \le 0.001,$$

and solving with respect to the \geq inequality (since we want $n \geq M$ for some M) yields

$$-0.001 \le \frac{n}{n+1} - 1 \implies 0.999 \le \frac{n}{n+1} \implies 0.999(n+1) \le n.$$

Solving for n yields $n \ge 999$, so M = 999 will do the trick.

(b) $|a_n - 1| \le 10^{-5}$ for $n \ge M$.

Solution: You do this! The answer is $n \ge 99,999$.

7. (a)
$$a_n = \left(\frac{5}{2}\right)^{n-1} \longleftrightarrow \text{series} = \sum_{n=1}^{\infty} \left(\frac{5}{2}\right)^{n-1}$$
.

(b)
$$a_n = \frac{1 + \frac{1 + (-1)^{n+1}}{2}}{n^2 + 1} \longleftrightarrow \text{series} = \sum_{n=1}^{\infty} \frac{1 + \frac{1 + (-1)^{n+1}}{2}}{n^2 + 1}$$

8. (a)
$$s_2 = -\frac{1}{2}$$
; $s_4 = -\frac{7}{12}$; $s_6 = -\frac{37}{60}$

(c)
$$s_2 = -\frac{14}{3}$$
; $s_4 = -\frac{44}{5}$; $s_6 = -\frac{90}{7}$

(b)
$$s_2 = \frac{3}{2}$$
; $s_4 = \frac{41}{24}$; $s_6 = \frac{1237}{720}$

(d)
$$s_2 = \frac{42}{121}$$
; $s_4 = \frac{5460}{14641}$; $s_6 = \frac{664062}{1771561}$

9. (a)
$$\frac{1}{9}$$

(c)
$$\frac{217}{999}$$

(b)
$$\frac{13}{99}$$

(d)
$$\frac{1234}{9999}$$

10. (a) Series notation:
$$\sum_{k=3}^{\infty} \frac{1}{k(k-1)};$$

partial fraction:
$$\frac{1}{k(k-1)} = \frac{1}{k-1} - \frac{1}{k}$$
;

partial sum:
$$s_n = \frac{1}{2} - \frac{1}{n}$$
 for $n \ge 3$;

total sum:
$$\lim_{n\to\infty} s_n = 1/2$$
.

(b) Series notation:
$$\sum_{k=1}^{\infty} \frac{1}{(2k-1)(2k+1)};$$

partial fraction:
$$\frac{1}{(2k-1)(2k+1)} = \frac{1/2}{2k-1} - \frac{1/2}{2k+1}$$
;

partial sum:
$$s_n = \frac{1}{2} - \frac{1}{2(2n+1)}$$

total sum:
$$\lim_{n\to\infty} s_n = 1/2$$
.

(c) Series notation:
$$\sum_{k=1}^{\infty} \frac{1}{k(k+1)(k+2)};$$

partial fraction:
$$\frac{1}{k(k+1)(k+2)} = \frac{1/2}{k} - \frac{1}{k+1} + \frac{1/2}{k+2}$$
;

partial sum:
$$s_n = \frac{n^2 + 3n}{4(n^2 + 3n + 2)}$$

total sum:
$$\lim_{n\to\infty} s_n = 1/4$$
.

(d) Series notation:
$$\sum_{k=1}^{\infty} \frac{1}{k^2 + 3k + 2} = \sum_{k=1}^{\infty} \frac{1}{(k+2)(k+1)};$$

partial fraction:
$$\frac{1}{(k+2)(k+1)} = \frac{1}{k+1} - \frac{1}{k+2}$$
;

partial sum:
$$s_n = \frac{1}{2} - \frac{1}{n+2}$$

total sum:
$$\lim_{n\to\infty} s_n = 1/2$$
.

11. Determine the sum of each of the following series or state that the series does not exist converge.

- (a) Does not converge: $a_n \to 1$ as $n \to \infty$
- (b) Does not converge: $a_n \to \pm \infty$ as $n \to \infty$
- (c) Does not converge: $a_n \to \pm 1$ as $n \to \infty$
- (d) Geometric series: $a = (4/5)^3$, r = 4/5: Converges to $\frac{(4/5)^3}{1-4/5} = \frac{64}{25}$.
- (e) Does not converge: $a_n \not\to 0$ as $n \to \infty$
- (f) Geometric series: $a=e^3, r=e^{-2}$: Converges to $\frac{e^3}{1-e^{-2}}=\frac{64}{25}$.
- (g) Converges to $-\frac{839}{1344}$;

this is definitely **not** an exam-level question, but if you want to see it worked out, don't hesitate to ask!

4

(h) Geometric series: a = 25/9, r = 3/5:

Converges to
$$\frac{25/9}{1 - (3/5)} = \frac{125}{18}$$

(i) Geometric series: a = 7/8, r = -7/8:

Converges to
$$\frac{7/8}{1 - (-7/8)} = \frac{7}{15}$$

(j) Does not converge: p-test with p = 1/2.

- 12. (a) Write the first three terms of the sequence a_n . Solution: $a_1 = -1/2$; $a_2 = 2/4$; $a_3 = -6/8$.
 - (b) Write the first three terms of the subsequence b_n where, for each n, $b_n = a_{2n}$. Solution: $b_1 = a_2 = 2/4$; $b_2 = a_4 = 24/16$; $b_3 = a_6 = 720/64$.
 - (c) Write the first three terms of the subsequence c_n where, for each n, $c_n = (a_n + a_{n+1})/b_n$. Solution: $c_1 = (a_1 + a_2)/b_1 = 0$; $c_2 = (a_2 + a_3)/b_2 = -1/6$; $c_3 = (a_3 + a_4)/b_3 = 1/15$
- 13. (a) Is increasing; is bounded below; is not bounded above. Solution: $a_n = n^2$
 - (b) Is increasing; is bounded above; is not bounded below; converges.

 Solution: No such sequence exists: All convergent sequences are bounded (this is hard).
 - (c) Is decreasing; is bounded neither above nor below; converges.

 Solution: No such sequence exists: All convergent sequences are bounded (this is hard).
 - (d) Is neither increasing nor decreasing; is bounded; converges to 4. Solution: $a_n = 4 + \frac{(-1)^n}{n}$
 - (e) Is neither increasing nor decreasing; is not bounded; converges.

 Solution: No such sequence exists: All convergent sequences are bounded (this is hard).
 - (f) Is monotone; is bounded; converges to 6 and -12 simultaneously.

 Solution: No such sequence exists: The limit of a convergent sequence is unique.
 - (g) Does not converge but has a subsequence which *does* converge. **Solution:** $a_n = (-1)^n = \{-1, 1, -1, 1, -1, 1, \ldots\}$. The subsequences $a_{2n-1} = \{-1, -1, -1, \ldots\}$ and $a_{2n} = \{1, 1, 1, \ldots\}$ both converge.
 - (h) Converges, but has a subsequence which *does not* converge.

 Solution: No such sequence exists: Every subsequence of a convergent sequence converges.
 - (i) Converges, and has a subsequence which converges to a *different* limit. **Solution:** No such sequence exists: Every subsequence of a convergent sequence converges to the same limit as the larger sequence.
 - (j) Has two different subsequences which converge to -7 and to 7, respectively. **Solution:** $a_n = (-7)^n = \{-7, 7, -7, 7, \ldots\}.$
 - (k) Has nine different subsequences which converge to 1, 2, 3, ..., 9 respectively. **Solution:** $a_n = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...\}$. For k = 1, 2, 3, ..., 9, the subsequence $a_{kn} = \{k, k, k, ...\}$ converges to k.

- (l) Diverges; has a subsequence which is increasing; has a different subsequence which diverges. **Solution:** $a_n = (-1)^n n$. The subsequence $a_{2n} = 2n$ is increasing and the subsequence $a_{2n-1} = -(2n-1)$ is a different sequence which diverges.
- 14. (a) Both a_n and b_n converge but $\{a_n + b_n\}$ fails to converge. **Solution:** No such sequences exists: The sum of convergent sequences converges.
 - (b) Neither a_n nor b_n converge but $a_n b_n$ converges. Solution: $a_n = n, b_n = n - 1 \implies a_n - b_n = n - (n - 1) = 1$ converges to 1.
 - (c) a_n converges, b_n diverges, and a_n/b_n converges. Solution: $a_n = 1, b_n = n \implies a_n/b_n = 1/n$ converges to 0.
 - (d) $a_n \to L$, $b_n \to L$, and $a_n/b_n \to L$. Solution: $a_n = 1, b_n = 1 - 1/n \to 1 \implies a_n/b_n = 1/(1 - 1/n)$ also converges to 1.
 - (e) a_n diverges, $b_n \to \sqrt{2}$, and $a_n b_n \to 19$. Solution: No such sequences exist.
 - (f) $\sum_{n=1}^{\infty} a_n$ diverges and $\sum_{n=1}^{\infty} b_n$ diverges but $\sum_{n=1}^{\infty} (a_n + b_n)$ converges.

Solution: $a_n = -n, b_n = n.$

(g) $\sum_{n=1}^{\infty} a_n$ converges and $\sum_{n=1}^{\infty} b_n$ converges but $\sum_{n=1}^{\infty} \frac{a_n}{b_n}$ diverges.

Solution: $a_n = 1/n^3$, $b_n = 1/n^2$. $\sum a_n$ and $\sum b_n$ both converge as *p*-series. However,

$$\frac{a_n}{b_n} = \frac{1/n^3}{1/n^2} = \frac{1}{n}$$

and $\sum 1/n$ diverges.