Name: \qquad

MAC 2312 - Homework 5

Directions: Complete the following problems for a homework grade. Solutions must be presented in a neat and professional manner in order to receive credit, answers given without showing work will not be eligible to receive partial credit, and work for the problems must be done on scratch paper and not on this handout! Date Due: Monday, November 28.

1. Go to the \#talk_about_your_break channel in our course's SLACK room (see course homepage for the URL) and talk about your break!
2. Match each sequence with its general term:

$a_{1}, a_{2}, a_{3}, a_{r}, \ldots$	General Term
(a) $1,-1,1,-1, \ldots$	(i) $\cos (\pi n)$
(b) $-1,1,-1,1, \ldots$	(ii) $\frac{n!}{2^{n}}$
(c) $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \ldots$	(iii) $(-1)^{n+1}$
(d) $\frac{1}{2}, \frac{1}{2}, \frac{3}{4}, \frac{3}{2}, \ldots$	(iv) $\frac{n}{n+1}$

3. Write the first eight terms of the following sequence:

$$
b_{1}=1, \quad b_{2}=2, \quad b_{3}=4, \quad b_{n}=\sqrt{b_{n-1}^{2}+b_{n-2}^{2}+b_{n-3}^{2}} \quad \text { for } n \geq 4
$$

4. Determine the limit of each of the following sequences or state that the sequence diverges.
(a) $a_{n}=12$
(e) $s_{n}=\tan ^{-1}\left(e^{e^{-n}}\right)$
(b) $\left\{\ln \left(\frac{12 n+2}{-9+4 n^{2}}\right)\right\}_{n=1}^{\infty}$
(f) $\left\{\arccos \left(\frac{n^{3}}{2 n^{3}+1}\right)\right\}$
(c) $b_{n}=10^{-1 / n}$
(g) $k_{n}=\frac{n}{n+n^{1 / n}}$
(d) $\{\ln (\sin n)-\ln n\}$
(h) $\left\{\frac{(-1)^{n} n^{3}+2^{-n}}{3 n^{3}+4^{-n}}\right\}$
5. In this problem, you're going to formalize the proof of the result we did in class showing that

$$
\sqrt{2 \sqrt{2 \sqrt{2 \sqrt{\cdots}}}} \longrightarrow 2
$$

Note the inductive formulation $a_{1}=\sqrt{2}$ and $a_{n+1}=\sqrt{2 a_{n}}, n \geq 1$.
(a) Use the inductive formulation to show that $a_{n+1}=\sqrt{2 a_{n}}<2$ if $a_{n}<2$. (Note: Because $a_{1}=\sqrt{2}<2$, this shows that the entire sequence is bounded above by 2).
(b) Using part (a) along with the inductive formulation, show that $\sqrt{2 a_{n}}>\sqrt{a_{n} \cdot a_{n}}$ if $a_{n}<2$. Use this to conclude that $a_{n+1}>a_{n}$ (i.e., that the entire sequence is monotone).
(c) Use the results from parts (a) and (b) to conclude that the sequence $\left\{a_{n}\right\}$ has a limit.
(d) Find the value L for which $a_{n} \rightarrow L$ as $n \rightarrow \infty$.
(e) Repeat parts (a)-(d) with the expression $\sqrt{3 \sqrt{3 \sqrt{3 \sqrt{\cdots}}}}$
(f) Repeat parts (a)-(d) with the expression $\sqrt{2+\sqrt{2+\sqrt{2+\cdots}}}$
6. Let $a_{n}=\frac{n}{n+1}$. Find a number M such that:
(a) $\left|a_{n}-1\right| \leq 0.001$ for $n \geq M$.
(b) $\left|a_{n}-1\right| \leq 10^{-5}$ for $n \geq M$.
7. For each of the following series, (a) find a formula for the general term a_{n} (not the partial sum!) and (b) write in summation notation.
(a) $1+\frac{5}{2}+\frac{25}{4}+\frac{125}{8}+\cdots$
(b) $\frac{2}{1^{2}+1}+\frac{1}{2^{2}+1}+\frac{2}{3^{2}+1}+\frac{1}{4^{2}+1}+\cdots$

Hint: Numerators are either $1=1+\frac{0}{2}$ or $2=1+\frac{2}{2} \ldots$.
8. Calculate the partial sums s_{2}, s_{4}, and s_{6} for each of the following.
(a) $\sum_{k=1}^{\infty}(-1)^{k} k^{-1}$
(c) $\sum_{n=1}^{\infty}\left(\frac{1}{n+1}-\frac{1}{n+2}\right)$
(b) $\sum_{j=1}^{\infty} \frac{1}{j!}$
(d) $\sum_{r=1}^{\infty}\left(\frac{3}{11}\right)^{-r}$
9. Write each of the following repeating decimals as rational numbers in lowest form.
(a) $0.111111 \ldots$
(c) $0.217217217 \ldots$
(b) $0.131313 \ldots$
(d) $0.1234123412341234 \ldots$
10. Use partial fraction decomposition to find each of the following sums.
(a) $\sum_{n=3}^{\infty} \frac{1}{n(n-1)}$
(c) $\frac{1}{1 \cdot 2 \cdot 3}+\frac{1}{2 \cdot 3 \cdot 4}+\frac{1}{3 \cdot 4 \cdot 5}+\cdots$.
(b) $\frac{1}{1 \cdot 3}+\frac{1}{3 \cdot 5}+\frac{1}{5 \cdot 7}+\cdots$.
(d) $\sum_{j=1}^{\infty} \frac{1}{n^{2}+3 n+2}$
11. Determine the sum of each of the following series or state that the series does not exist.
(a) $\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^{2}+1}}$
(f) $\sum_{n=0}^{\infty} e^{3-2 n}$
(b) $\sum_{n=1}^{\infty}(-1)^{n} n^{2}$
(g) $\sum_{n=3}^{\infty} \frac{3(-2)^{2}-5^{n}}{8^{n}}$
(c) $\cos 1+\cos 1 / 2+\cos 1 / 3+\cos 1 / 4+\cdots$
(h) $\frac{25}{9}+\frac{5}{3}+1+\frac{3}{5}+\frac{9}{25}+\frac{27}{125}+\cdots$
(d) $\frac{4^{3}}{5^{3}}+\frac{4^{4}}{5^{4}}+\frac{4^{5}}{5^{5}}+\cdots$
(i) $\frac{7}{8}-\frac{49}{64}+\frac{343}{512}-\frac{2401}{4096}+\cdots$
(e) $\frac{2}{3}+\frac{3^{2}}{2^{2}}+\frac{2^{3}}{3^{3}}+\frac{3^{4}}{2^{4}}+\frac{2^{5}}{3^{5}}+\cdots$
(j) $\sum_{j=1}^{\infty} \frac{1}{\sqrt{j}}$
12. A subsequence of a sequence $\left\{a_{n}\right\}$ is a sequence $\left\{b_{n}\right\}$ such that, for all $n, b_{n}=a_{k}$ for some increasing collection of k 's (i.e., if $b_{1}=a_{12}$, then $b_{2}=a_{k}$ for some $k \geq 12$). Throughout, let

$$
a_{n}=\frac{(-1)^{n} n!}{2^{n}}
$$

(a) Write the first three terms of the sequence a_{n}.
(b) Write the first three terms of the subsequence b_{n} where, for each $n, b_{n}=a_{2 n}$.
(c) Write the first three terms of the subsequence c_{n} where, for each $n, c_{n}=\left(a_{n}+a_{n+1}\right) / b_{n}$.
13. Write an example of a sequence which satisfies each of the following conditions or state that no such sequence exists. If both cases, justify your claim using results from class and/or "formal" proofs.
(a) Is increasing; is bounded below; is not bounded above.
(b) Is increasing; is bounded above; is not bounded below; converges.
(c) Is decreasing; is bounded neither above nor below; converges.
(d) Is neither increasing nor decreasing; is bounded; converges to 4 .
(e) Is neither increasing nor decreasing; is not bounded; converges.
(f) Is monotone; is bounded; converges to 6 and -12 simultaneously.
(g) Does not converge but has a subsequence which does converge.
(h) Converges, but has a subsequence which does not converge.
(i) Converges, and has a subsequence which converges to a different limit.
(j) Has two different subsequences which converge to -7 and to 7 , respectively.
(k) Has nine different subsequences which converge to $1,2,3, \ldots, 9$ respectively.
(l) Diverges; has a subsequence which is increasing; has a different subsequence which diverges.
14. Write an example of two sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ which satisfy each of the following conditions or state that no such sequence exists. If both cases, justify your claim using results from class and/or "formal" proofs.
(a) Both a_{n} and b_{n} converge but $\left\{a_{n}+b_{n}\right\}$ fails to converge.
(b) Neither a_{n} nor b_{n} converge but $a_{n}-b_{n}$ converges.
(c) a_{n} converges, b_{n} diverges, and a_{n} / b_{n} converges.
(d) $a_{n} \rightarrow L, b_{n} \rightarrow L$, and $a_{n} / b_{n} \rightarrow L$.
(e) a_{n} diverges, $b_{n} \rightarrow \sqrt{2}$, and $a_{n} b_{n} \rightarrow 19$.
(f) $\sum_{n=1}^{\infty} a_{n}$ diverges and $\sum_{n=1}^{\infty} b_{n}$ diverges but $\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)$ converges.
(g) $\sum_{n=1}^{\infty} a_{n}$ converges and $\sum_{n=1}^{\infty} b_{n}$ converges but $\sum_{n=1}^{\infty} \frac{a_{n}}{b_{n}}$ diverges.

