MAC 2312 - Homework 3 - SOLUTIONS

1. Nossing, Lebowski, nossing.
2. Solve each of the following separable differential equations (DEs) and/or separable DE initial value problems (IVPs).
(a) $x y^{2} y^{\prime}=x+1$

Solution: Rewrite y^{\prime} as $d y / d x$ and separate:

$$
x y^{2} \frac{d y}{d x}=x+1 \quad \Longrightarrow \quad y^{2} d y=\frac{x+1}{x} d x
$$

Now, rewrite $\frac{x+1}{x}$ as $1+\frac{1}{x}$ and integrate:

$$
\int y^{2} d y=\int 1+\frac{1}{x} d x \quad \Longrightarrow \quad \frac{y^{3}}{3}=x+\ln |x|+C
$$

Now, solve for y :

$$
\frac{y^{3}}{3}=x+\ln |x|+C \quad \Longrightarrow \quad y=(3 x+3 \ln |x|+3 C)^{1 / 3} .
$$

Note: You can rewrite $3 C$ as C ! In class, that's what we did! Here, I'm leaving it this way to be explicit!
(b) $\frac{d x}{d t}=\frac{e^{x} \sin ^{2}(t)}{x \sec t}$

Solution: Separate, do some algebra, and bring in the integrals:

$$
\frac{d x}{d t}=\frac{e^{x} \sin ^{2}(t)}{x \sec t} \Longrightarrow \frac{x}{e^{x}} d x=\frac{\sin ^{2}(t)}{\sec t} d t \Longrightarrow \int x e^{-x} d x=\int \sin ^{2}(t) \cos t d t
$$

For the integral on the left, you have to use Integration by Parts (IBP) with $u=x$ and $v^{\prime}=e^{-x}$; on the right, you can use u-substitution with $u=\sin (t) \Longrightarrow d u=\cos (t) d t$. Doing so shows that

$$
\int x e^{-x} d x=-x e^{-x}-e^{-x}+C \quad \text { and } \quad \int \sin ^{2}(t) \cos t d t=\frac{1}{3} \sin ^{3}(t)
$$

To finish, set these two values equal and solve for t by (a) multiplying both sides by 3, (b) taking a cube root (i.e. a $1 / 3$ power) of both sides, and (c) taking arcsin of both sides:

$$
-x e^{-x}-e^{-x}+C=\frac{1}{3} \sin ^{3}(t) \Longrightarrow t=\arcsin \left(3\left(-x e^{-x}-e^{-x}+C\right)\right)^{1 / 3}
$$

(c) $\frac{d y}{d x}=2 x y-2 y+2 x-2, y(1)=0$

Solution: This problem is tremendously hard if you don't realize you need to factor the right-hand side! When you have four terms, think "factor by grouping":

$$
\begin{aligned}
2 x y-2 y+2 x-2 & =(2 x y-2 y)+(2 x-2) \\
& =2 y(x-1)+2((x-1) \\
& =(x-1)(2 y+2) .
\end{aligned}
$$

Now, we separate and introduce integrals:

$$
\frac{d y}{d x}=(x-1)(2 y+2) \Longrightarrow \frac{d y}{2 y+2}=(x-1) d x \Longrightarrow \frac{1}{2} \int \frac{d y}{y+1}=\int(x-1) d x
$$

Using u-substitution on the left and basic integration on the right, we have

$$
\frac{1}{2} \ln (y+1)=\frac{1}{2} x^{2}-x+C
$$

and so solving for y yields the general solution:

$$
\begin{equation*}
y=-1+e^{x^{2}-2 x+2 C} \tag{1}
\end{equation*}
$$

Since this is an IVP, we use the initial condition $y(1)=0$ to solve for C :

$$
y=-1+e^{x^{2}-2 x+2 C} \Longrightarrow 0=-1+e^{1^{2}-2(1)+2 C} \Longrightarrow 0=-1+e^{-1+2 C} .
$$

Now, solving for C yields

$$
1=e^{-1+2 C} \Longrightarrow \ln (1)=-1+2 C \Longrightarrow C=\frac{1}{2}
$$

and so plugging back into (1) gives the particular solution

$$
y=-1+e^{x^{2}-2 x+1} \text {. }
$$

(d) $x^{2} \frac{d y}{d x}=\sqrt{1-y^{2}}$

Solution: Because $d x$ is on the bottom on the side with the x term, we flip everything:

$$
x^{2} \frac{d y}{d x}=\sqrt{1-y^{2}} \Longrightarrow \frac{1}{x^{2}} \frac{d x}{d y}=\frac{1}{\sqrt{1-y^{2}}}
$$

Now, separate and introduce integrals:

$$
\frac{1}{x^{2}} \frac{d x}{d y}=\frac{1}{\sqrt{1-y^{2}}} \Longrightarrow \frac{d x}{x^{2}}=\frac{d y}{\sqrt{1-y^{2}}} \Longrightarrow \int \frac{d x}{x^{2}}=\int \frac{d y}{\sqrt{1-y^{2}}}
$$

For the left side, you're integrating x^{-2}, which is simple; on the right, you need trig substitution with $y=\sin \theta$ (or, you may have memorized the integral of the right-hand side). Upon finishing the integral (you should do this integration yourself!), you should have

$$
\frac{-1}{x}+C=\arcsin y \Longrightarrow y=\sin \left(\frac{-1}{x}+C\right)
$$

(e) $e^{y}\left(\frac{d y}{d x}\right)=1+e^{2 y}-x e^{2 y}-x, y(0)=1$

Solution: This is another factor by grouping thing:

$$
1+e^{2 y}-x e^{2 y}-x=1\left(1+e^{2 y}\right)-x\left(e^{2 y}+1\right)=(1-x)\left(1+e^{2 y}\right)
$$

implies that

$$
e^{y}\left(\frac{d y}{d x}\right)=(1-x)\left(1+e^{2 y}\right) .
$$

Now, separate and write integrals:
$e^{y}\left(\frac{d y}{d x}\right)=(1-x)\left(1+e^{2 y}\right) \Longrightarrow \frac{e^{y}}{1+e^{2 y}} d y=(1-x) d x \Longrightarrow \int \frac{e^{y}}{1+e^{2 y}} d y=\int(1-x) d x$.
The right integral is obvious; for the left integral, let $u=e^{y} \Longrightarrow d u=e^{y} d y$ and notice that the denominator is $1+e^{2 y}=1+\left(e^{y}\right)^{2}=1+u^{2}$. So,

$$
\int \frac{e^{y}}{1+e^{2 y}} d y=\int \frac{d u}{1+u^{2}}=\arctan u=\arctan \left(e^{y}\right)
$$

and thus,

$$
\begin{equation*}
\arctan \left(e^{y}\right)=x-\frac{1}{2} x^{2}+C \Longrightarrow y=\ln \left(\tan \left(x-\frac{1}{2} x^{2}+C\right)\right) . \tag{2}
\end{equation*}
$$

Now, use the initial condition $y(0)=1$ to deduce that $1=\ln (\tan C) \Longrightarrow C=\tan ^{-1} e$; plugging into (2) yields the final solution:

$$
y=\ln \left(\tan \left(x-\frac{1}{2} x^{2}+\tan ^{-1} e\right)\right) .
$$

3. (a) Write the differential equation modeling the following scenario: The rate of growth of a population P over time is directly proportional to the population.
Solution: $\frac{d P}{d t}=k P$.
(b) Show that the solution to the equation in (a) is $P(t)=C e^{k t}$ where k is the constant of proportionality.

Solution: This is worked out in detail in §9.4, subsection "The Law of Natural Growth."
4. (a) Let M be a constant and let k denote a constant of proportionality. Show that the solution to the logistic differential equation

$$
\frac{d P}{d t}=k P\left(1-\frac{P}{M}\right)
$$

has the form

$$
P(t)=M \frac{C e^{k t}}{1+C e^{k t}}
$$

Solution: This is worked out in detail in $\S 9.4$, subsection "The Logistic Model."
(b) Write the solution of the initial value problem

$$
\frac{d P}{d t}=0.08 P\left(1-\frac{P}{1000}\right) \quad P(0)=100
$$

Solution: Notice that this problem looks identical to the one in (a) with the values $k=0.08$ and $M=1000$; thus, the answer in (a) yields a general solution of the form

$$
\begin{equation*}
P(t)=1000\left(\frac{C e^{0.08 t}}{1+C e^{0.08 t}}\right) \tag{3}
\end{equation*}
$$

Now, use the condition $P(0)=100$ to solve for C :

$$
100=1000\left(\frac{C e^{0.08(0)}}{1+C e^{0.08(0)}}\right)=\frac{1000 C}{1+C} \Longrightarrow C=\frac{1}{9}
$$

Substituting back in to (3) yields the result:

$$
P(t)=1000\left(\frac{\frac{1}{9} e^{0.08 t}}{1+\frac{1}{9} e^{0.08 t}}\right)
$$

(c) Show that if P satisfies the logistic equation in (a), then the second derivative $\frac{d^{2} P}{d t^{2}}$ satisfies the following:

$$
\frac{d^{2} P}{d t^{2}}=k^{2} P\left(1-\frac{P}{M}\right)\left(1-\frac{2 P}{M}\right) .
$$

Solution: Find the derivative (with respect to t) of $d P / d t$ using the product rule, noting that anything other than P and t are constants. The result is immediate.
5. Solve each of the following linear differential equations and/or linear DE IVPs.

Recall: The goal for each of these problems is to write the DE in the "standard form"

$$
\frac{d y}{d x}+P(x) y=Q(x)
$$

to use $P(x)$ to define the integrating factor

$$
I(x)=e^{\int P(x) d x}
$$

and to multiply both sides of the original DE by $I(x)$. Don't forget the trick:

$$
I(x)\left(\frac{d y}{d x}+P(x) y\right)=\frac{d}{d x}(y I(x)) .
$$

(a) $\frac{d y}{d x}=y \sin x-2 \sin x$

Solution: Rewriting the DE as

$$
\frac{d y}{d x}-y \sin x=-2 \sin x
$$

it follows that $P(x)=-\sin x$ and hence that

$$
I(x)=e^{\int(-\sin x) d x}=e^{\cos x} .
$$

Thus:

$$
\begin{aligned}
\frac{d y}{d x}-y \sin x=-2 \sin x & \Longrightarrow I(x)\left(\frac{d y}{d x}-y \sin x\right)=-2 I(x) \sin x \\
& \Longrightarrow \underbrace{e^{\cos x}\left(\frac{d y}{d x}-y \sin x\right)}_{\text {Don't forget the trick! }}=-2 e^{\cos x} \sin x \\
& \Longrightarrow \frac{d}{d x}\left(y e^{\cos x}\right)=-2 e^{\cos x} \sin x
\end{aligned}
$$

Now, integrate both sides with respect to x :

$$
\frac{d}{d x}\left(y e^{\cos x}\right)=-2 e^{\cos x} \sin x \Longrightarrow \int\left(\frac{d}{d x}\left(y e^{\cos x}\right)\right) d x=\int-2 e^{\cos x} \sin x d x
$$

On the left, the fundamental theorem of Calculus (FTC) says the integral cancels the derivative; on the right, let $u=\cos x \Longrightarrow d u=-\sin x d x$ to get:

$$
y e^{\cos x}=2 e^{\cos x}+C
$$

Now, solve for y :

$$
y=2+\frac{C}{e^{\cos x}} .
$$

(b) $x y^{\prime}=e^{x}-y, y(1)=0$

Solution: The first steps are mechanical:

$$
\begin{array}{rlr}
x y^{\prime}=e^{x}-y & \Longrightarrow \frac{d y}{d x}+\frac{1}{x} y=\frac{e^{x}}{x} & \text { (divide by } x \text { and rearrange) } \\
& \Longrightarrow P(x)=\frac{1}{x} \quad \text { and } \quad I(x)=e^{\int(1 / x) d x}=e^{\ln x}=x \\
& \Longrightarrow x\left(\frac{d y}{d x}+\frac{1}{x} y\right)=x\left(\frac{e^{x}}{x}\right) \quad \text { (multiply both sides by } I(x)=x \text {) } \\
& \Longrightarrow \frac{d}{d x}(y x)=e^{x} . & \text { (use the trick) }
\end{array}
$$

Now, integrate both sides with respect to x and solve for y :

$$
\frac{d}{d x}(y x)=e^{x} \Longrightarrow \int\left(\frac{d}{d x}(y x)\right) d x=\int e^{x} d x \Longrightarrow y x=e^{x}+C
$$

and so

$$
\begin{equation*}
y=\frac{e^{x}}{x}+\frac{C}{x} . \tag{4}
\end{equation*}
$$

Now, use the initial value $y(1)=0$ to find C :

$$
0=e+C \Longrightarrow C=-e .
$$

Finally, plug back into (4):

$$
y=\frac{e^{x}}{x}-\frac{e}{x} .
$$

(c) $y^{\prime}=\frac{y}{x}+x, y(1)=1$

Solution: The solution of the DE is similar to that in (b):

$$
y^{\prime}=\frac{y}{x}+x \Longrightarrow \frac{d y}{d x}-\frac{1}{x} y=x \Longrightarrow I(x)=e^{\int(-1 / x) d x}=e^{-\ln x} .
$$

Now, write $-\ln x=-1 \cdot \ln x$ so that

Thus:

$$
I(x)=\underbrace{e^{-1 \cdot \ln x}=\left(e^{\ln x}\right)^{-1}}_{a^{b c}=\left(a^{b}\right)^{c}}=x^{-1}=\frac{1}{x} .
$$

$$
\frac{1}{x}\left(\frac{d y}{d x}-\frac{1}{x} y\right)=\frac{1}{x}(x) \Longrightarrow \underbrace{\frac{d}{d x}\left(\frac{1}{x} y\right)=1 \Longrightarrow \frac{1}{x} y=x+C}_{\text {integrate both sides with respect to } x} \Longrightarrow y=x^{2}+C x .
$$

Now, $y(1)=1$ implies $C=0$, and so

$$
y=x^{2} .
$$

(d) $\left(1+t^{2}\right) y^{\prime}+4 t y=\left(1+t^{2}\right)^{-2}$

Solution: Divide by $\left(1+t^{2}\right)$ to get

$$
\frac{d y}{d t}+\frac{4 t}{1+t^{2}} y=\frac{1}{\left(1+t^{2}\right)^{3}}
$$

so that $P(x)=4 t\left(1+t^{2}\right)^{-1}$ and hence

$$
I(x)=\underbrace{e^{\int 4 t\left(1+t^{2}\right)^{-1} d t}=e^{2 \ln \left(1+t^{2}\right)}}_{\operatorname{let} u=1+t^{2} \Longrightarrow d u=2 t d t}=\left(e^{\ln \left(1+t^{2}\right)}\right)^{2}=\left(1+t^{2}\right)^{2} .
$$

Now,

$$
\frac{d y}{d t}+\frac{4 t}{1+t^{2}} y=\frac{1}{\left(1+t^{2}\right)^{3}} \Longrightarrow\left(1+t^{2}\right)^{2}\left(\frac{d y}{d t}+\frac{4 t}{1+t^{2}} y\right)=\left(1+t^{2}\right)^{2}\left(\frac{1}{\left(1+t^{2}\right)^{3}}\right)
$$

and hence,

$$
\frac{d}{d t}\left(y\left(1+t^{2}\right)^{2}\right)=\frac{1}{1+t^{2}} \Longrightarrow \int\left[\frac{d}{d t}\left(y\left(1+t^{2}\right)^{2}\right)\right] d t=\int \frac{1}{1+t^{2}} d t
$$

The integral of the right-hand side is $\arctan t$, and so

$$
y\left(1+t^{2}\right)^{2}=\tan ^{-1} t+C \Longrightarrow y=\frac{\tan ^{-1} t+C}{\left(1+t^{2}\right)^{2}}
$$

6. Solution: For (a), the goal is to solve the DE

$$
\frac{d}{d t}\left(\left(M_{0}-r t\right) v\right)=F-\left(M_{0}-r t\right) g
$$

for $v=v(t)$. This is already separated, so integrating both sides with respect to t is sufficient:

$$
\begin{aligned}
\frac{d}{d t}\left(\left(M_{0}-r t\right) v\right)=F-\left(M_{0}-r t\right) g & \Longrightarrow \int\left[\frac{d}{d t}\left(\left(M_{0}-r t\right) v\right)\right] d t=\int\left(F-\left(M_{0}-r t\right) g\right) d t \\
& \Longrightarrow v\left(M_{0}-r t\right)=F t-M_{0} g t-\frac{g r t^{2}}{2}+C \\
& \Longrightarrow v=\frac{1}{M_{0}-r t}\left(F t-M_{0} g t-\frac{g r t^{2}}{2}+C\right)
\end{aligned}
$$

Now, to finish part (a), note that $t=0$ implies $v=0$, i.e. $C=0$. Hence,

$$
\begin{equation*}
v=\frac{1}{M_{0}-r t}\left(F t-M_{0} g t-\frac{g r t^{2}}{2}\right)=\frac{F t}{M_{0}-r t}-\frac{g}{M_{0}-r t}\left(M_{0} t-\frac{r t^{2}}{2}\right) . \tag{5}
\end{equation*}
$$

To do (b), note that at burnout, $M_{1}=M_{0}-r t$, and per the hint,

$$
r t=M_{0}-M_{1} \Longrightarrow t=\frac{M_{0}-M_{1}}{r} .
$$

The goal will be to plug into (5) and to solve for v (without t 's):

$$
\begin{aligned}
\boxed{v} & =\frac{F t}{M_{0}-r t}-\frac{g}{M_{0}-r t}\left(M_{0} t-\frac{r t^{2}}{2}\right) \\
& =\frac{F r t}{r\left(M_{0}-r t\right)}-\frac{g}{M_{0}-r t}\left(M_{0} t-\frac{r^{2} t^{2}}{2 r}\right) \quad \text { (replace } t \text { with } r t \text { by adding extra } r \text { 's) } \\
& =\frac{F\left(M_{0}-M_{1}\right)}{r M_{1}}-\frac{g}{M_{1}}\left[M_{0}\left(\frac{M_{0}-M_{1}}{r}\right)-\frac{\left(M_{0}-M_{1}\right)^{2}}{2 r}\right] .
\end{aligned}
$$

This can be simplified some, but there really is no need.

