
MAC 2312 — Homework 3

——SOLUTIONS——
1. Nossing, Lebowski, nossing.

2. Solve each of the following separable differential equations (DEs) and/or separable DE initial
value problems (IVPs).

(a) xy2y′ = x+ 1

Solution: Rewrite y′ as dy/dx and separate:

xy2 dy

dx
= x+ 1 =⇒ y2dy = x+ 1

x
dx.

Now, rewrite x+ 1
x

as 1 + 1
x

and integrate:
∫
y2 dy =

∫
1 + 1

x
dx =⇒ y3

3 = x+ ln |x|+ C.

Now, solve for y:
y3

3 = x+ ln |x|+ C =⇒ y = (3x+ 3 ln |x|+ 3C)1/3 .

Note: You can rewrite 3C as C! In class, that’s what we did! Here, I’m leaving it this
way to be explicit!

(b) dx

dt
= ex sin2(t)

x sec t
Solution: Separate, do some algebra, and bring in the integrals:

dx

dt
= ex sin2(t)

x sec t =⇒ x

ex
dx = sin2(t)

sec t dt =⇒
∫
xe−x dx =

∫
sin2(t) cos t dt.

For the integral on the left, you have to use Integration by Parts (IBP) with u = x and
v′ = e−x; on the right, you can use u-substitution with u = sin(t) =⇒ du = cos(t) dt.
Doing so shows that∫

xe−x dx = −xe−x − e−x + C and
∫

sin2(t) cos t dt = 1
3 sin3(t).

To finish, set these two values equal and solve for t by (a) multiplying both sides by 3, (b)
taking a cube root (i.e. a 1/3 power) of both sides, and (c) taking arcsin of both sides:

−xe−x − e−x + C = 1
3 sin3(t) =⇒ t = arcsin

(
3
(
−xe−x − e−x + C

))1/3
.
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(c) dy

dx
= 2xy − 2y + 2x− 2, y(1) = 0

Solution: This problem is tremendously hard if you don’t realize you need to factor the
right-hand side! When you have four terms, think “factor by grouping”:

2xy − 2y + 2x− 2 = (2xy − 2y) + (2x− 2)

= 2y (x− 1) + 2 (x− 1)

= (x− 1) (2y + 2) .

Now, we separate and introduce integrals:

dy

dx
= (x− 1) (2y + 2) =⇒ dy

2y + 2 = (x− 1)dx =⇒ 1
2

∫ dy

y + 1 =
∫

(x− 1) dx.

Using u-substitution on the left and basic integration on the right, we have

1
2 ln(y + 1) = 1

2x
2 − x+ C,

and so solving for y yields the general solution:

y = −1 + ex2−2x+2C . (1)

Since this is an IVP, we use the initial condition y(1) = 0 to solve for C:

y = −1 + ex2−2x+2C =⇒ 0 = −1 + e12−2(1)+2C =⇒ 0 = −1 + e−1+2C .

Now, solving for C yields

1 = e−1+2C =⇒ ln(1) = −1 + 2C =⇒ C = 1
2 ,

and so plugging back into (1) gives the particular solution

y = −1 + ex2−2x+1 .
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(d) x2 dy

dx
=
√

1− y2

Solution: Because dx is on the bottom on the side with the x term, we flip everything:

x2 dy

dx
=
√

1− y2 =⇒ 1
x2
dx

dy
= 1√

1− y2 .

Now, separate and introduce integrals:
1
x2
dx

dy
= 1√

1− y2 =⇒ dx

x2 = dy√
1− y2 =⇒

∫ dx

x2 =
∫ dy√

1− y2 .

For the left side, you’re integrating x−2, which is simple; on the right, you need trig
substitution with y = sin θ (or, you may have memorized the integral of the right-hand
side). Upon finishing the integral (you should do this integration yourself!), you
should have

−1
x

+ C = arcsin y =⇒ y = sin
(−1
x

+ C
)
.

(e) ey

(
dy

dx

)
= 1 + e2y − xe2y − x, y(0) = 1

Solution: This is another factor by grouping thing:

1 + e2y − xe2y − x = 1
(
1 + e2y

)
− x

(
e2y + 1

)
= (1− x)

(
1 + e2y

)
implies that

ey

(
dy

dx

)
= (1− x)

(
1 + e2y

)
.

Now, separate and write integrals:

ey

(
dy

dx

)
= (1−x)

(
1 + e2y

)
=⇒ ey

1 + e2y
dy = (1−x) dx =⇒

∫ ey

1 + e2y
dy =

∫
(1−x) dx.

The right integral is obvious; for the left integral, let u = ey =⇒ du = ey dy and notice
that the denominator is 1 + e2y = 1 + (ey)2 = 1 + u2. So,∫ ey

1 + e2y
dy =

∫ du

1 + u2 = arctan u = arctan (ey) ,

and thus,

arctan (ey) = x− 1
2x

2 + C =⇒ y = ln
(

tan
(
x− 1

2x
2 + C

))
. (2)

Now, use the initial condition y(0) = 1 to deduce that 1 = ln(tanC) =⇒ C = tan−1 e;
plugging into (2) yields the final solution:

y = ln
(

tan
(
x− 1

2x
2 + tan−1 e

))
.
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3. (a) Write the differential equation modeling the following scenario: The rate of growth of a
population P over time is directly proportional to the population.

Solution: dP

dt
= kP .

(b) Show that the solution to the equation in (a) is P (t) = Cekt where k is the constant of
proportionality.

Solution: This is worked out in detail in §9.4, subsection “The Law of Natural Growth.”

4. (a) LetM be a constant and let k denote a constant of proportionality. Show that the solution
to the logistic differential equation

dP

dt
= kP

(
1− P

M

)
has the form

P (t) = M
Cekt

1 + Cekt
.

Solution: This is worked out in detail in §9.4, subsection “The Logistic Model.”

(b) Write the solution of the initial value problem

dP

dt
= 0.08P

(
1− P

1000

)
P (0) = 100.

Solution: Notice that this problem looks identical to the one in (a) with the values k = 0.08
and M = 1000; thus, the answer in (a) yields a general solution of the form

P (t) = 1000
(

Ce0.08t

1 + Ce0.08t

)
. (3)

Now, use the condition P (0) = 100 to solve for C:

100 = 1000
(

Ce0.08(0)

1 + Ce0.08(0)

)
= 1000C

1 + C
=⇒ C = 1

9 .

Substituting back in to (3) yields the result:

P (t) = 1000
( 1

9e
0.08t

1 + 1
9e

0.08t

)
.
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(c) Show that if P satisfies the logistic equation in (a), then the second derivative d
2P

dt2
satisfies

the following:
d2P

dt2
= k2P

(
1− P

M

)(
1− 2P

M

)
.

Solution: Find the derivative (with respect to t) of dP/dt using the product rule, noting
that anything other than P and t are constants. The result is immediate.

5. Solve each of the following linear differential equations and/or linear DE IVPs.

Recall: The goal for each of these problems is to write the DE in the “standard form”

dy

dx
+ P (x)y = Q(x),

to use P (x) to define the integrating factor

I(x) = e
∫

P (x) dx,

and to multiply both sides of the original DE by I(x). Don’t forget the trick:

I(x)
(
dy

dx
+ P (x)y

)
= d

dx
(y I(x)) .

(a) dy

dx
= y sin x− 2 sin x

Solution: Rewriting the DE as

dy

dx
− y sin x = −2 sin x,

it follows that P (x) = − sin x and hence that

I(x) = e
∫

(− sin x) dx = ecos x.

Thus:

dy

dx
− y sin x = −2 sin x =⇒ I(x)

(
dy

dx
− y sin x

)
= −2I(x) sin x

=⇒ ecos x

(
dy

dx
− y sin x

)
︸ ︷︷ ︸

Don’t forget the trick!

= −2ecos x sin x

=⇒ d

dx
(yecos x) = −2ecos x sin x
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Now, integrate both sides with respect to x:

d

dx
(yecos x) = −2ecos x sin x =⇒

∫ (
d

dx
(yecos x)

)
dx =

∫
−2ecos x sin x dx.

On the left, the fundamental theorem of Calculus (FTC) says the integral cancels the
derivative; on the right, let u = cosx =⇒ du = − sin x dx to get:

yecos x = 2ecos x + C.

Now, solve for y:

y = 2 + C

ecos x
.

(b) xy′ = ex − y, y(1) = 0

Solution: The first steps are mechanical:

xy′ = ex − y =⇒ dy

dx
+ 1
x
y = ex

x
(divide by x and rearrange)

=⇒ P (x) = 1
x

and I(x) = e
∫

(1/x) dx = eln x = x

=⇒ x

(
dy

dx
+ 1
x
y

)
= x

(
ex

x

)
(multiply both sides by I(x) = x)

=⇒ d

dx
(yx) = ex. (use the trick)

Now, integrate both sides with respect to x and solve for y:

d

dx
(yx) = ex =⇒

∫ (
d

dx
(yx)

)
dx =

∫
ex dx =⇒ yx = ex + C,

and so
y = ex

x
+ C

x
. (4)

Now, use the initial value y(1) = 0 to find C:

0 = e+ C =⇒ C = −e.

Finally, plug back into (4):

y = ex

x
− e

x
.
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(c) y′ = y

x
+ x, y(1) = 1

Solution: The solution of the DE is similar to that in (b):

y′ = y

x
+ x =⇒ dy

dx
− 1
x
y = x =⇒ I(x) = e

∫
(−1/x) dx = e− ln x.

Now, write − ln x = −1 · ln x so that

I(x) = e−1·ln x =
(
eln x

)−1

︸ ︷︷ ︸
abc = (ab)c

= x−1 = 1
x
.

Thus:
1
x

(
dy

dx
− 1
x
y

)
= 1
x

(x) =⇒ d

dx

(1
x
y
)

= 1 =⇒ 1
x
y = x+ C︸ ︷︷ ︸

integrate both sides with respect to x

=⇒ y = x2 + Cx.

Now, y(1) = 1 implies C = 0, and so

y = x2 .

(d) (1 + t2)y′ + 4ty = (1 + t2)−2

Solution: Divide by (1 + t2) to get

dy

dt
+ 4t

1 + t2
y = 1

(1 + t2)3

so that P (x) = 4t(1 + t2)−1 and hence

I(x) = e
∫

4t(1+t2)−1 dt = e2 ln(1+t2)︸ ︷︷ ︸
let u = 1 + t2 =⇒ du = 2t dt

=
(
eln(1+t2)

)2
=
(
1 + t2

)2
.

Now,

dy

dt
+ 4t

1 + t2
y = 1

(1 + t2)3 =⇒
(
1 + t2

)2
(
dy

dt
+ 4t

1 + t2
y

)
=
(
1 + t2

)2
(

1
(1 + t2)3

)
,

and hence,

d

dt

(
y
(
1 + t2

)2
)

= 1
1 + t2

=⇒
∫ [

d

dt

(
y
(
1 + t2

)2
)]

dt =
∫ 1

1 + t2
dt.

The integral of the right-hand side is arctan t, and so

y
(
1 + t2

)2
= tan−1 t+ C =⇒ y = tan−1 t+ C

(1 + t2)2 .
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6. Solution: For (a), the goal is to solve the DE

d

dt
((M0 − rt)v) = F − (M0 − rt)g

for v = v(t). This is already separated, so integrating both sides with respect to t is sufficient:

d

dt
((M0 − rt)v) = F − (M0 − rt)g =⇒

∫ [
d

dt
((M0 − rt)v)

]
dt =

∫
(F − (M0 − rt)g) dt

=⇒ v(M0 − rt) = Ft−M0gt−
grt2

2 + C

=⇒ v = 1
M0 − rt

(
Ft−M0gt−

grt2

2 + C

)
.

Now, to finish part (a), note that t = 0 implies v = 0, i.e. C = 0. Hence,

v = 1
M0 − rt

(
Ft−M0gt−

grt2

2

)
= Ft

M0 − rt
− g

M0 − rt

(
M0t−

rt2

2

)
. (5)

To do (b), note that at burnout, M1 = M0 − rt, and per the hint,

rt = M0 −M1 =⇒ t = M0 −M1

r
.

The goal will be to plug into (5) and to solve for v (without t’s):

v = Ft

M0 − rt
− g

M0 − rt

(
M0t−

rt2

2

)

= Frt

r(M0 − rt)
− g

M0 − rt

(
M0t−

r2t2

2r

)
(replace t with rt by adding extra r’s)

= F (M0 −M1)
rM1

− g

M1

[
M0

(
M0 −M1

r

)
− (M0 −M1)2

2r

]
.

This can be simplified some, but there really is no need.
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