Name: \qquad

MAC 2312 - Homework 3

Directions: Complete the following problems (front and back) for a homework grade. Problems must be neatly written up and presented in a professional manner in order to receive credit, and answers given without showing work will not be eligible to receive partial credit.
Date Due: Monday, October 31.

1. Go to the \#past_exams channel in our course's Slack room (see course homepage for the URL) and either ask about a question from a past exam (Exam 1 or Exam 2) or give feedback to someone else's question thereon.
2. Solve each of the following separable differential equations (DEs) and/or separable DE initial value problems (IVPs).
(a) $x y^{2} y^{\prime}=x+1$
(b) $\frac{d x}{d t}=\frac{e^{x} \sin ^{2}(t)}{x \sec t}$
(c) $\frac{d y}{d x}=2 x y-2 y+2 x-2, y(1)=0$
(d) $x^{2} \frac{d y}{d x}=\sqrt{1-y^{2}}$
(e) $e^{y}\left(\frac{d y}{d x}\right)=1+e^{2 y}-x e^{2 y}-x, y(0)=1$
3. (a) Write the differential equation modeling the following scenario: The rate of growth of a population P over time is directly proportional to the population.
(b) Show that the solution to the equation in (a) is $P(t)=C e^{k t}$ where k is the constant of proportionality.
4. (a) Let M be a constant and let k denote a constant of proportionality. Show that the solution to the logistic differential equation

$$
\frac{d P}{d t}=k P\left(1-\frac{P}{M}\right)
$$

has the form

$$
P(t)=M \frac{C e^{k t}}{1+C e^{k t}}
$$

(b) Write the solution of the initial value problem

$$
\frac{d P}{d t}=0.08 P\left(1-\frac{P}{1000}\right) \quad P(0)=100
$$

(c) Show that if P satisfies the logistic equation in (a), then the second derivative $\frac{d^{2} P}{d t^{2}}$ satisfies the following:

$$
\frac{d^{2} P}{d t^{2}}=k^{2} P\left(1-\frac{P}{M}\right)\left(1-\frac{2 P}{M}\right) .
$$

5. Solve each of the following linear differential equations and/or linear DE IVPs.
(a) $\frac{d y}{d x}=y \sin x-2 \sin x$
(b) $x y^{\prime}=e^{x}-y, y(1)=0$
(c) $y^{\prime}=\frac{y}{x}+x, y(1)=1$
(d) $\left(1+t^{2}\right) y^{\prime}+4 t y=\left(1+t^{2}\right)^{-2}$
6. A rocket with initial mass M_{0} (kilograms) blasts off at time $t=0$, and after taking off, the mass of the rocket decreases with time because the fuel is being spent at a constant burning rate r (kg per sec). If thrust is a constant force F and velocity is v, Newton's second law gives

$$
\begin{equation*}
\frac{d}{d t}\left(\left(M_{0}-r t\right) v\right)=F-\left(M_{0}-r t\right) g \tag{1}
\end{equation*}
$$

where $g=9.8$ is the gravitational constant. (a) Solve the equation (1) for $v=v(t)$, given that $v=0$ when $t=0$. (b) If the mass of the rocket at burnout is $M_{0}-r t=M_{1}$, compute the velocity of the rocket at burnout.

Hint: Once you have the solution in part (a), replace $M_{0}-r t$ by M_{1} and replace $r t$ by the appropriate expression in terms of M_{0} and M_{1} obtained by solving the equation $M_{0}-r t=M_{1}$ for $r t$.

