Name: \qquad

MAC 2312 - Homework 1

Directions: Complete the following problems (front and back) for a homework grade. Answers given without showing work will not be eligible to receive partial credit. Problems must be neatly written up and presented in a professional manner in order to receive credit.
Date Due: Either September 15, 2016 or September 20, 2016.

1. (a) Navigate to our course homepage at
```
http://www.math.fsu.edu/~cstover/teaching/fa16_2312/
```

(b) Read and familiarize yourself with the three resources listed under Supplementary Resources on the General Info tab.
(c) Follow the instructions for using Slack messenger.

Note: This may require that I approve your email address, so to avoid some last minute glitch where I don't get to your approval on-time, please don't wait to do this!
(d) Navigate to the channel \#three_things_about_me in the left column under ChanNels (its browser url should be something like https://fall2016-calc2.slack.com/messages/ three_things_about_me/) and post three random things about yourself.

Note: This will be visible to everyone who signs into our class's chat room, so you definitely want to keep this PG-13, safe for work, and non-incriminatory. ©)
2. Compute each of the following integrals, noting that each can be found using "old knowledge" (i.e., techniques you knew before learning IBP).
(a) $\int \tan (x) d x$
(b) $\int \sec (x) d x \quad$ Hint: $\frac{\sec (x)+\tan (x)}{\sec (x)+\tan (x)}=1$.
3. (a) Use the product rule for derivatives to derive the identity for integration by parts:

$$
\int f(x) g^{\prime}(x) d x=f(x) g(x)-\int f^{\prime}(x) g(x) d x
$$

(b) Evaluate each of the following using integration by parts.
i. $\int(2 x+2) e^{-x} d x$
ii. $\int_{\sqrt{\pi}}^{\pi^{2}}\left(x^{2}+2 x+1\right) e^{-x} d x$
iii. $\int x^{3} \sqrt{1+x^{2}} d x \quad$ Hint: If you try to integrate $\sqrt{1+x^{2}}$, you'll have a bad day.
iv. $\int \arcsin (3 x) d x$
v. $\int 2 x \arctan (x) d x \quad$ Hint: $\frac{a^{2}}{1+a^{2}}=\frac{\left(1+a^{2}\right)-1}{1+a^{2}}$
vi. $\int(\arcsin (x))^{2} d x$
vii. $\int x \tan ^{2}(x) d x \quad$ Hint: $\tan ^{2}(x)=\sec ^{2}(x)-1$.
(c) Use the method of cylindrical shells to find the volume generated by rotating the region bounded by the curves $y=\cos (\pi x / 2), y=0, x=0$, and $x=1$ about the y-axis.
(d) i. Use integration by parts to prove that $\int f(x) d x=x f(x)-\int x f^{\prime}(x) d x$.
ii. Using the above formula along with the definition $\operatorname{LI}(x) \stackrel{\text { def }}{=} \int \frac{1}{\ln (x)} d x$, calculate

$$
\int \ln (\ln (x)) d x
$$

4. (a) Compute each of the following trig integrals.
i. $\int \sec ^{2}(\theta) \tan ^{3}(\tan (\theta)) d \theta \quad$ Hint: Let $u=\tan (\theta)$; then, see Example 7 in $\S 7.2$.
ii. $\int \sin ^{5}(\phi) \cos ^{3}(\phi) d \phi$
ii. $\int \sin (5 x) \cos (8 x) d x$
iv. $\int \sin ^{2}(x) \cos ^{8}(x) d x$
(b) Evaluate

$$
\int \sin (x) \cos (x) d x
$$

by four methods: (i) the substitution $u=\cos (x)$; (ii) the substitution $u=\sin (x)$; (iii) the identity $\sin (2 x)=2 \sin (x) \cos (x)$; and (iv) integration by parts.
(c) Find the average value of the function $f(x)=\sin ^{2}(x) \cos ^{2}(x)$ on the interval $[-\pi, 32 \arctan (19)]$.
(d) Assuming m and n are positive integers (i.e., $m, n \in \mathbb{Z}^{>0}$), prove each of the following identities:
i. $\int_{-\pi}^{\pi} \sin (m x) \cos (n x) d x=0$
ii. $\int_{-\pi}^{\pi} \sin (m x) \sin (n x) d x=\left\{\begin{array}{lll}0 & \text { if } & m \neq n \\ \pi & \text { if } & m=n\end{array}\right.$
iii. $\int_{-\pi}^{\pi} \cos (m x) \cos (n x) d x=\left\{\begin{array}{lll}0 & \text { if } & m \neq n \\ \pi & \text { if } & m=n\end{array}\right.$
5. (a) Evaluate each of the following integrals.
i. $\int \frac{x^{3}}{\sqrt{x^{2}+4}} d x$
ii. $\int \sqrt{4-x^{2}} d x$
iii. $\int \frac{d t}{t^{5} \sqrt{9 t^{2}-16}}$
iv. $\int \frac{y^{2}}{\left(3+4 y-4 y^{2}\right) \sqrt{3+4 y-4 y^{2}}} d y$
v. $\int \frac{k^{2}}{\left(k^{2}+a^{2}\right)^{3 / 2}} d k$
(b) Find the area of the region bounded by the hyperbola $16 x^{2}-9 y^{2}=144$ and the line $x=3 \sqrt{2}$.
(c) Compute each of the following integrals using both of the methods stated.
i. $\int \frac{x^{3}}{\left(9-x^{2}\right)^{5 / 2}} d x$ using
(1) the substitution $x=3 \sin (\theta)$, and (2) the substitution $u^{2}=9-x^{2}$.
ii. $\int \frac{1}{x^{4}\left(9+x^{2}\right)^{1 / 2}} d x$ using
(1) the substitution $x=3 \tan (\theta)$, and (2) the substitution $u^{2}=\frac{9+x^{2}}{x^{2}}$.
iii. $\int \frac{1}{x \sqrt{x^{2}-1}} d x$ using
(1) the substitution $x=\sec (\theta)$, and (2) the substitution $u^{2}=x^{2}-1$.
6. (a) Write out the form of the partial fraction decomposition of the following functions but do not determine the numerical values of the coefficients (see Example 7 in §7.4).
i. $\frac{t^{6}+1}{t^{6}+t^{3}}$
ii. $\frac{x^{5}+x^{3}+1}{\left(x^{2}-x\right)\left(x^{4}+2 x^{2}+1\right)}$
(b) Evaluate each of the following integrals.
i. $\int \frac{10}{(y-1)\left(y^{2}+9\right)} d y$
ii. $\int \frac{x^{3}+2 x^{2}+3 x-2}{\left(x^{2}+2 x+2\right)^{2}} d x$
iii. $\int \frac{8+x}{3 x^{3}+13 x^{2}+18 x+8} d x \quad$ Hint: $x=-1$ is a root of the denominator.
iv. $\int \frac{2+v^{4}}{v^{3}+9 v} d v$
v. $\int \frac{e^{2 z}}{e^{2 z}+3 e^{z}+2} d z$
(c) i. If $t=\tan (x / 2)$, sketch a right triangle to prove that

$$
\cos \left(\frac{x}{2}\right)=\frac{1}{\sqrt{1+t^{2}}} \quad \text { and } \quad \sin \left(\frac{x}{2}\right)=\frac{t}{\sqrt{1+t^{2}}}
$$

ii. Show that $\cos (x)=\frac{1-t^{2}}{1+t^{2}}, \sin (x)=\frac{2 t}{\sqrt{1+t^{2}}}$, and $d x=\frac{2}{1+t^{2}} d t$.
iii. Use the above substitutions to evaluate

$$
\int_{\pi / 3}^{\pi / 2} \frac{1}{1+\sin (x)-\cos (x)} d x
$$

by transforming the integrand into a rational function of t.
7. Solve each of the following integrals using any of the methods you know.
(a) $\int(4 y+2)^{\sqrt{\pi}} d y$
(i) $\int \theta \tan ^{2}(\theta) d \theta$
(b) $\int t \sin (t) \cos (t) d t$
(j) $\int_{0}^{1} x \sqrt{2-\sqrt{1-x^{2}}} d x$
(c) $\int_{0}^{4} \frac{x-1}{x^{2}-4 x-5} d x$
(k) $\int \frac{d x}{x \sqrt{4 x^{2}-1}}$
(d) $\int e^{x+e^{x}} d x$
(l) $\int \cos (x) \cos ^{3}(\sin (x)) d x$
(e) $\int \frac{\ln (x)}{x\left(1+(\ln (x))^{2}\right)^{3 / 2}} d x$
(m) $\int_{\pi / 4}^{\pi / 3} \frac{\ln (\tan (x))}{\sin (x) \cos (x)} d x$
(f) $\int\left(\ln (x)+\frac{3 x^{2}-2}{x^{3}-2 x-8}\right) d x$
(n) $\int \frac{d x}{\sqrt{x}(2+\sqrt{x})^{4}}$
(g) $\int \sin (\sqrt{t \sqrt{2}}) d t$
(o) $\int \frac{1}{(x-2)\left(x^{2}+4\right)} d x$
(h) $\int \frac{\sec (\theta) \tan (\theta)}{\sec ^{2}(\theta)-\sec (\theta)} d \theta$
(p) $\int \frac{d y}{\sqrt{4 y^{2}-4 y-3}}$

