How to determine whether $\sum_{n=1}^{\infty} a_n$ converges or diverges.

Throughout, let f be a function satisfying $f(n) = a_n$.

- Question 1: Can my series converge (i.e. does $\lim_{n\to\infty} a_n$ exist and does $\lim_{n\to\infty} a_n = 0$?)
 - If no: You're done; $\sum_{n=1}^{\infty} a_n$ diverges.
 - If yes: Your series may converge. Go to Question 2.
- Question 2: Does my series have negative terms?
 - If no: You have a positive series. Go to Question 3.
 - \circ If yes: Go to Question 5.

Question 3: Is my series a geometric series or a *p*-series?

- If yes: Use the info you know about geometric series and/or *p*-series and you're done.
- \circ If no: Go to Question 4.

Question 4: If I squint at my series, does it kinda-sorta look like a geometric series or a *p*-series?

- If *yes*, use either the comparison test or the limit comparison test.
 - Use **the comparison test** if you can get the inequalities to work.
 - Use the limit comparison test if you can't get the inequalities to work but you're sure you're squinting is accurate.
- \circ If no:
 - Does my series have factorials and/or $(constant)^n$?
 - \implies Use the Ratio Test!
 - Does a_n have the form $a_n = (b_n)^n$ (a whole function to the *n*th power)?
 - \implies Use the Root Test!
 - Does it look like I can find $\int_1^\infty f(x) dx$?
 - \implies (Try to) Use the Integral Test! (f must be <u>continuous</u>, <u>positive</u>, and <u>decreasing</u>!)
 - If none of the ratio, root, or integral tests seem appropriate:
 - \implies Ask whatever higher power you believe in for an intervention. (If you don't have a higher power, ask a friend to borrow theirs.)
- Question 5: Is my series alternating? (i.e., is $a_n = (-1)^n b_n$ or $a_n = (-1)^{n+1} b_n$ where $\{b_n\}$ has all positive terms?)
 - If yes: (Try to) Use the Alternating Series Test! (b_n must be decreasing and $\lim_{n\to\infty} b_n = 0$ must hold)

 $\circ~$ If no:

- Does my series have factorials and/or $(constant)^n$?
 - \implies Use the Ratio Test!
- Does a_n have the form $a_n = (b_n)^n$ (a whole function to the *n*th power)?
 - \implies Use the Root Test!
- If neither the ratio nor root test seems applicable:
 - \implies See Question 4 about borrowing higher powers, etc.
 - \implies Try looking at $\sum_{n=1}^{\infty} |a_n|$ directly by going back at **Question 3**.