How to determine whether $\sum_{n=1}^{\infty} a_{n}$ converges or diverges.
Throughout, let f be a function satisfying $f(n)=a_{n}$.

- If no: You're done; $\sum_{n=1}^{\infty} a_{n}$ diverges.
- If yes: Your series may converge. Go to Question 2.

Question 2: Does my series have negative terms?

- If no: You have a positive series. Go to Question 3.
- If yes: Go to Question 5.

Question 3: Is my series a geometric series or a p-series?

- If yes: Use the info you know about geometric series and/or \boldsymbol{p}-series and you're done.
- If no: Go to Question 4.

Question 4: If I squint at my series, does it kinda-sorta look like a geometric series or a p-series?

- If yes, use either the comparison test or the limit comparison test.
- Use the comparison test if you can get the inequalities to work.
- Use the limit comparison test if you can't get the inequalities to work but you're sure you're squinting is accurate.
- If $n o$:
- Does my series have factorials and/or (constant) ${ }^{n}$?

\Longrightarrow Use the Ratio Test!

- Does a_{n} have the form $a_{n}=\left(b_{n}\right)^{n}$ (a whole function to the nth power)?
\Longrightarrow Use the Root Test!
- Does it look like I can find $\int_{1}^{\infty} f(x) d x$?
\Longrightarrow (Try to) Use the Integral Test! (f must be continuous, positive, and decreasing!)
- If none of the ratio, root, or integral tests seem appropriate:
\Longrightarrow Ask whatever higher power you believe in for an intervention. (If you don't have a higher power, ask a friend to borrow theirs.)

Question 5: Is my series alternating? (i.e., is $a_{n}=(-1)^{n} b_{n}$ or $a_{n}=(-1)^{n+1} b_{n}$ where $\left\{b_{n}\right\}$ has all positive terms?)

- If yes: (Try to) Use the Alternating Series Test! (b_{n} must be decreasing and $\lim _{n \rightarrow \infty} b_{n}=0$ must hold)
- If $n o$:
- Does my series have factorials and/or (constant) ${ }^{n}$?
\Longrightarrow Use the Ratio Test!
- Does a_{n} have the form $a_{n}=\left(b_{n}\right)^{n}$ (a whole function to the nth power)?
\Longrightarrow Use the Root Test!
- If neither the ratio nor root test seems applicable:
\Longrightarrow See Question 4 about borrowing higher powers, etc.
\Longrightarrow Try looking at $\sum_{n=1}^{\infty}\left|a_{n}\right|$ directly by going back at Question 3.

