Example: Determine the interval and radius of convergence for the power series $\sum_{n=2}^{\infty} \frac{x^{n}}{n(\ln (n))^{1 / 2}}$.

Solution:

We use the ratio test with $a_{n}=\frac{x^{n}}{n(\ln (n))^{1 / 2}}$ and so:

$$
\begin{align*}
\left|\frac{a_{n+1}}{a_{n}}\right| & =\left|\frac{x^{n+1}}{(n+1)(\ln (n+1))^{1 / 2}} \cdot \frac{n(\ln (n))^{1 / 2}}{x^{n}}\right| \tag{1}\\
& =\left|\frac{x^{n+1}}{x^{n}} \cdot \frac{n}{n+1} \cdot \frac{(\ln (n))^{1 / 2}}{(\ln (n+1))^{1 / 2}}\right| \tag{2}\\
& =|x| \cdot \underbrace{\frac{n}{n+1}}_{(a)} \cdot \underbrace{\frac{(\ln (n))^{1 / 2}}{(\ln (n+1))^{1 / 2}}}_{(b)} \tag{3}
\end{align*}
$$

Note that: For (1), we multiplied by the reciprocal instead of dividing; for (2) we grouped things that looked the same; and for (3), we noticed that the absolute values only affect that x (because all the n things are guaranteed to be positive).

Now, as $n \rightarrow \infty,(a) \rightarrow 1$ and (b) $\rightarrow 1$ (which you could get from L'Hopital), so the entire last bit goes to $|x| * 1 * 1=|x|$ as $n \rightarrow \infty$. Call this limit R.

The ratio test says that the series you have converges absolutely if $R<1$, so you're looking at the interval $R<1 \Longleftrightarrow|x|<1$. As an interval, this is $(-1,1)$.

Next, you test the endpoints $x=-1$ and $x=1$ by plugging those values into the original power series and seeing if the resulting series converges or diverges.

For $x=-1$:

$$
\sum_{n=2}^{\infty} \frac{x^{n}}{n(\ln (n))^{1 / 2}}=\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n(\ln (n))^{1 / 2}}
$$

Now, we note that this is an alternating series, that the positive part

$$
b_{n}=\frac{1}{n(\ln (n))^{1 / 2}}
$$

is decreasing (larger denominator $=$ smaller fraction), and that $b_{n} \rightarrow 0$ as $n \rightarrow \infty$. Therefore, by the alternating series test, the series converges for $x=-1$.

Finally, for $x=1$:

$$
\sum_{n=2}^{\infty} \frac{x^{n}}{n(\ln (n))^{1 / 2}}=\sum_{n=2}^{\infty} \frac{1}{n(\ln (n))^{1 / 2}}
$$

and because the associated function

$$
f(x)=\frac{1}{x(\ln (x))^{1 / 2}}
$$

is positive, continuous (for $2<x<\infty$), and decreasing (see above), we can use the integral test:

$$
\int_{2}^{\infty} \frac{1}{x(\ln (x))^{1 / 2}} d x=\left.2 \sqrt{\ln (x)}\right|_{2} ^{\infty}=\infty \Longrightarrow \sum_{n=2}^{\infty} \frac{1}{n(\ln (n))^{1 / 2}} \quad \text { diverges by the integral test. }
$$

Therefore, the original power series converges on the interval $(-1,1)$ (by the ratio test) and at $x=-1$ (by the above), making your final answer:

Interval of convergence: $I=[-1,1)$; Radius of convergence: $R=1$.

