Sample Questions for Approximate Integration

There are a number of good, test-worthy questions that can be asked regarding approximate integration. Here's a sample.

Example 1. Let $f(x)=e^{-x^{2}}$. Given that $\left|f^{\prime \prime}(x)\right| \leq 2$ and that $\left|f^{(4)}(x)\right| \leq 12$ on $[-3,3]$, answer the following questions regarding numerical approximations to $\int_{-3}^{3} f(x) d x$:

1. Bound the values $\left|E_{T}\right|,\left|E_{M}\right|$, and $\left|E_{S}\right|$ for $n=8$.
2. Find the number of subintervals needed for the trapezoidal rule to be accurate within 10^{-6}.

Solution:

1. Here, we use the formulas

$$
\begin{aligned}
& \left|E_{T}\right| \leq \frac{K_{1}(b-a)^{3}}{12 n^{2}} \\
& \left|E_{M}\right| \leq \frac{K_{1}(b-a)^{3}}{24 n^{2}}
\end{aligned}
$$

and

$$
\left|E_{S}\right| \leq \frac{K_{2}(b-a)^{5}}{180 n^{4}}
$$

with $a=-3, b=3, n=8, K_{1}=2$, and $K_{2}=12$: For example,

$$
\left|E_{T}\right| \leq \frac{K_{1}(b-a)^{3}}{12 n^{2}}=\frac{2(6)^{3}}{12(8)^{2}}=\frac{9}{16}=0.5625
$$

Similarly, $\left|E_{M}\right| \leq 9 / 32=0.28125$ and $\left|E_{S}\right| \leq 81 / 640=0.1265625$.
2. Here, we use the formula

$$
\left|E_{T}\right| \leq \frac{K_{1}(b-a)^{3}}{12 n^{2}}
$$

a little bit differently: In particular, we know we want the error to be less than or equal to 10^{-6}, and we know from the question that we need to solve for n. To do that, we set up

$$
\frac{K_{1}(b-a)^{3}}{12 n^{2}} \leq 10^{-6}
$$

and solve for n (given that with $a=-3, b=3, K_{1}=2$, and $K_{2}=12$ still hold):

$$
\frac{2(6)^{3}}{12 n^{2}} \leq 10^{-6} \Longrightarrow 2(6)^{3} \leq 10^{-6}\left(12 n^{2}\right) \Longrightarrow \frac{2(6)^{3}}{12 \cdot 10^{-6}} \leq n^{2}
$$

Because the square root is a monotone function (don't worry about this fact) means we can take the square root of both sides without changing the inequality:

$$
\sqrt{\frac{2(6)^{3}}{12 \cdot 10^{-6}}} \leq n
$$

Thus, for any n larger than

$$
\sqrt{\frac{2(6)^{3}}{12 \cdot 10^{-6}}}=6000
$$

$\left|E_{T}\right| \leq 10^{-6}$ will be satisfied.

True or False

While this section is largely computational, our classroom discussion hinted at the fact that there are also tons of good true/false questions!

Example 2. Here are some facts to know which make really good true/false questions!
Solution:

1. For f strictly increasing, L_{n} is an underestimate and R_{n} is an overestimate for the area under the curve.
2. For f strictly decreasing, L_{n} is an overestimate and R_{n} is an underestimate for the area under the curve.
3. In general, $L_{n}<M_{n}<R_{n}$ is false.
4. $M_{n} \neq\left(L_{n}+R_{n}\right) / 2$.
5. $T_{n}=\left(L_{n}+R_{n}\right) / 2$ for all n .
6. $S_{2 n}=2 / 3 M_{n}+1 / 3 T_{n}$ for all n.
