Sample Questions for Approximate Integration

There are a number of good, test-worthy questions that can be asked regarding approximate integration. Here's a sample.

Example 1. Let $f(x) = e^{-x^2}$. Given that $|f''(x)| \le 2$ and that $|f^{(4)}(x)| \le 12$ on [-3,3], answer the following questions regarding numerical approximations to $\int_{-3}^{3} f(x) dx$:

- 1. Bound the values $|E_T|$, $|E_M|$, and $|E_S|$ for n = 8.
- 2. Find the number of subintervals needed for the trapezoidal rule to be accurate within 10^{-6} .

Solution:

1. Here, we use the formulas

$$|E_T| \le \frac{K_1(b-a)^3}{12n^2},$$

$$|E_M| \le \frac{K_1(b-a)^3}{24n^2},$$

and

$$|E_S| \le \frac{K_2(b-a)^5}{180n^4}$$

with a = -3, b = 3, n = 8, $K_1 = 2$, and $K_2 = 12$: For example,

$$|E_T| \le \frac{K_1(b-a)^3}{12n^2} = \frac{2(6)^3}{12(8)^2} = \frac{9}{16} = 0.5625.$$

Similarly, $|E_M| \le 9/32 = 0.28125$ and $|E_S| \le 81/640 = 0.1265625$.

2. Here, we use the formula

$$|E_T| \le \frac{K_1 (b-a)^3}{12n^2}$$

a little bit differently: In particular, we know we want the error to be less than or equal to 10^{-6} , and we know from the question that we need to solve for n. To do that, we set up

$$\frac{K_1(b-a)^3}{12n^2} \le 10^{-6}$$

and solve for n (given that with a = -3, b = 3, $K_1 = 2$, and $K_2 = 12$ still hold):

$$\frac{2(6)^3}{12n^2} \le 10^{-6} \implies 2(6)^3 \le 10^{-6}(12n^2) \implies \frac{2(6)^3}{12 \cdot 10^{-6}} \le n^2.$$

Because the square root is a monotone function (don't worry about this fact) means we can take the square root of both sides without changing the inequality:

$$\sqrt{\frac{2(6)^3}{12 \cdot 10^{-6}}} \le n.$$

Thus, for any n larger than

$$\sqrt{\frac{2(6)^3}{12 \cdot 10^{-6}}} = 6000.$$

 $|E_T| \leq 10^{-6}$ will be satisfied.

True or False

While this section is largely computational, our classroom discussion hinted at the fact that there are also tons of good true/false questions!

Example 2. Here are some facts to know which make really good true/false questions!

Solution:

- 1. For f strictly increasing, L_n is an underestimate and R_n is an overestimate for the area under the curve.
- 2. For f strictly decreasing, L_n is an overestimate and R_n is an underestimate for the area under the curve.
- 3. In general, $L_n < M_n < R_n$ is false.
- 4. $M_n \neq (L_n + R_n)/2.$
- 5. $T_n = (L_n + R_n)/2$ for all n.
- 6. $S_{2n} = 2/3M_n + 1/3T_n$ for all n.