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Abstract The tolerance of bacterial populations to biocidal or antibiotic treatment
has been well documented in both biofilm and planktonic settings. However, there
is still very little known about the mechanisms that produce this tolerance. Evidence
that small, non-mutant subpopulations of bacteria are not affected by an antibiotic
challenge has been accumulating and provides an attractive explanation for the failure
of typical dosing protocols. Although a dosing challenge can kill the susceptible bac-
teria, the remaining persister cells can serve as a source of population regrowth. We
give a condition for the failure of a periodic dosing protocol for a general chemostat
model, which supports the simulations of an earlier, more specialized batch model.
Our condition implies that the treatment protocol fails globally, in the sense that a
mixed bacterial population will ultimately persist above a level that is independent
of the initial composition of the population. We also give a sufficient condition for
treatment success, at least for initial population compositions near the steady state
of interest, corresponding to bacterial washout. Finally, we investigate how the speed
at which the bacteria are wiped out depends on the duration of administration of the
antibiotic. We find that this dependence is not necessarily monotone, implying that
optimal dosing does not necessarily correspond to continuous administration of the
antibiotic. Thus, genuine periodic protocols can be more advantageous in treating a
wide variety of bacterial infections.
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1 Introduction

The failure of antibiotic treatments to eliminate bacterial infections has become both
more evident and better understood in the past several decades. Although there
is evidence that both the use and over-use of antibiotics has amplified the number
of chromosomal-resistant bacteria [17,24], it is becoming increasingly clear that there
are other mechanisms that protect populations of bacteria. The notion that small
sub-populations of bacteria may display innate tolerance to various biocides has
been proposed as a possible reason for the failure of treatment for bacterial infec-
tions [3,9,20,22]. This may depend on whether the bacteria exist in a biofilm or not
[12,14,16,19,21] since bacteria within a biofilm are enmeshed in a physical gel that
provides a secondary boundary that may allow small numbers of bacteria to evade
the antibiotic; therefore, the failure to eliminate the entire population can allow the
population to regrow.

It should be noted that populations of planktonic bacteria also contain these highly
tolerant of persister cells [16,28]. Thus understanding the process of persister formation
and the response of the population to biocidal application is fundamental to developing
dosing protocols and treatments in both batch culture and biofilm populations.

As in many areas of biology, mathematical modeling has been used as a counterpart
to experimental observations. Because there are several hypotheses regarding the
mechanism of persister formation, mathematical modeling can be used to provide
insight into the success of failure of treatment protocols as well as the consistency of
various hypotheses. Currently, there are at least two distinct hypotheses concerning
persister formation. In the first case, persister formation is attributed to senescence,
and persister cells are assumed to be those that have undergone many division cycles. It
is known that asymmetric division leads to degradation of parts of the cellular machin-
ery that may be the underlying cause of persistence [26]. Mathematical analysis of
a model of senescence has been described in both chemostat and biofilm settings
[2,20].

A second hypothesis argues that persisters are a phenotype that is expressed at a
rate that depends primarily on the growth stage. Although the biological details are
not well understood, it is thought that this might be due to stochastic response to the
environmental conditions [3,19,22,23,28]. This has been investigated mathematically
as well [3,9,10,18,31]. In [9], a very simple model of persister formation was devel-
oped and optimal dosing protocols, that entail alternating application and resting, were
described. In [10], toxin/antitoxin interaction was explicitly included and the resulting
model was analyzed in a chemostat. Here a generic stress response was included that
was assumed to be linked to the nutrient load, with higher rate of toxin accumulation
when the nutrient level was low. In both of these investigations only one particular
form for the growth rate function was used.

One of the goals of the current investigation is to extend these results to a more
general form. In particular, modeling results are much more useful if they can be
shown to be independent of much of teh biological details of the system. In this paper
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we show that, although the process of persister formation is very complicated and is
not completely understood, successful dosing strategies can be developed. The model
and analysis is similar in spirit to a variety of models in the literature that seek to
develop broad understanding of optimal control in the absence of complete biological
understanding [1,7,6]

Our principal conclusions can be summarized as follows:

1. We generalize the model in [9] for persister formation by allowing more gen-
eral growth rate functions, and it turns out that our qualitative conclusions do not
depend on the particular form of these functions. In addition, while the model in
[9] was a batch model, here we consider a chemostat setting. We also assume that
persister cells are formed continuously, independently of whether or not the envi-
ronment contains antibiotics. In [9], persister cells were assumed to be formed only
when the environment contained antibiotics. Here we alter the model to include
persister formation at a rate that depends only on the growth rate. In the absence
of antibiotic challenge the persisters would not be evident except through slower
growth rate; however, antibiotic challenge at various growth stage (i.e lag or expo-
nential) would expose different concentrations of persister cells as demonstrated
in [19].

2. Whereas the focus in [9] was on simulations, and the mathematical analysis on
approximations of the model, here the focus is on the global mathematical analysis
of the original model.

3. Our conclusions regarding the global behavior are modest, but they seem to
answer the important question of whether or not the population is killed, or ulti-
mately persists, by a given periodic treatment protocol. We do this by identify-
ing a critical quantity, expressed in terms of the model parameters, whose value
should fall below a threshold for treatment success. This quantity is the spectral
radius of a certain matrix and plays a role which is very similar to that of the
basic reproduction ratio in more classical epidemiological and population mod-
els [13]. Provided that the model parameters are known, the calculation of this
quantity can precede an actual experiment or simulation run, and predict their
outcome.

4. When treatment succeeds, the critical quantity is inversely proportional to the
speed of convergence of solutions to the eradication steady state. We investigate
numerically how the convergence speed depends on the duration of the antibiotic
exposure of the bacterial population in a periodic dosing protocol. We find that
this dependence is typically non-monotone and reaches a global maximum at a
particular value of the duration. This may suggest to experimentalists how they
should set up their periodic treatment experiment if the concern is to kill off the
population as quickly as possible.

The manuscript is organized as follows: We begin by describing the model for
the dynamics of the bacterial population in response to antibiotic challenge. We then
develop the theory by analyzing two extreme cases (no dosing and constant dos-
ing) and the intermediate case. This leads to a local sufficient condition for treat-
ment success. Next we give a condition for global treatment failure, supported by
numerical simulations of the model. We also show that the speed of eradication does
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not necessarily depend monotonically on the duration of the administration of the
antibiotic.

2 Model

Consider the following chemostat model:

Ḃs = [(1 − kd(t) − kl) f (S) − D] Bs + kg(t)Bp (1)

Ḃp = kl f (S)Bs − [kg(t) + D]Bp (2)

Ṡ = D(S0 − S) − f (S)Bs

Y
(3)

where Bs is the concentration of the cells which are susceptible to antibiotics, Bp is
the concentration of the persister cells and S is the concentration of the nutrient. This
model deviates from the one in [9] because it is a chemostat model, which is reflected
in the additional loss terms at rate D (called the dilution rate or washout rate), and the
inflow (at the same rate D) of nutrient with an input concentration S0. We have also
incorporated an additional loss rate kl f (S)Bs for some positive kl , of susceptible cells
that become persister cells, regardless of whether or not antibiotics are administered.
The per capita growth rate of the susceptible cells is denoted by f (S), for which we
assume the following throughout the rest of the paper:

f : R+ → R+ is smooth and increasing and f (0) = 0.

The persister cells do not consume nutrient, hence the lack of a corresponding growth
term in the Bp-equation. The conversion of nutrient into new biomass occurs with a
yield of Y ∈ (0, 1).

The remaining functions kd(t) and kg(t) are non-negative, time-varying functions
which describe the effect of antibiotics on the population. First, kd (t) f (S) is the killing
rate of the susceptible population. Note in particular that the killing rate is propor-
tional to the growth rate of the cells. It is positive when both antibiotic and nutrient
are present, but zero when either one is missing. Secondly, kg(t) is the (per capita)
rate at which persister cells revert to the susceptible state when antibiotic is absent (it
is zero when antibiotic is present).

Since antibiotics are administered to the reactor vessel in a controlled (lab) envi-
ronment, we will make the simplifying assumption that the functions kd(t) and kg(t)
are τ -periodic (for some given τ > 0), and of the bang-bang type with simultaneous
switching instances: for some p ∈ [0, 1], and for positive parameters kd and kg , there
holds that

kd(t) =
{

kd for t ∈ [0, pτ)

0 for t ∈ [pτ, τ )
, and kg(t) =

{
0 for t ∈ [0, pτ)

kg for t ∈ [pτ, τ )
. (4)

Thus, antibiotics are present during a fraction p of the period τ , and absent during the
remaining fraction 1 − p of the period.
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Clearly, this is a simplification of reality because the concentration of an antibiotic
is not expected to be of the bang–bang type. In a more realistic model, the functions
kd(t) and kd(t) would be replaced by functions depending on (at least) a new state
variable for the concentration of the antibiotic, and the periodicity would arise through
a periodic forcing term in the equation for this new variable. We leave the study of
such a model to the future.

Throughout the rest of this paper we assume that the constant loss of suscepti-
ble cells to the persister compartment does not prevent a net positive growth of the
susceptible class:

1 − kl > 0, (5)

but that the additional effect of the antibiotic is lethal to the susceptible cells:

1 − kd − kl < 0. (6)

Note that this assumption is valid for the parameter values related to the experiments
described in [9].

The main purpose of this paper is to investigate how the behavior of system (1)–(3)
with (4) changes both qualitatively and quantitatively in terms of p.

3 Preliminary results

In this section we collect a couple of basic results concerning the dynamical behav-
ior of (1)–(3) with (4). For a real-valued function x(t), we denote the extended real
numbers lim inf t→∞ x(t) and lim supt→∞ x(t) by x∞ and x∞, respectively.

Lemma 1 System (1)–(3) with (4) has R
3+ as a forward invariant set, and its solutions

are ultimately bounded by a uniform bound.

Proof The first assertion is obvious. The second follows from consideration of the
dynamics of

M = Bs + Bp + Y S,

given by

Ṁ = D(Y S0 − M) − kd(t) f (S)Bs ≤ D(Y S0 − M),

and hence

M∞ ≤ Y S0.

Not only are all state components of every solution ultimately bounded from above
by some constant which does not depend on initial conditions, we also notice in the fol-
lowing Lemma, that S(t) is ultimately bounded from below by some positive constant
which is independent of initial conditions as well.
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Lemma 2 There is a constant θ > 0 such that for all solutions of (1)–(3) with (4),
there holds that S∞ ≥ θ .

Proof Consider the function g(x) := f (x)S0 − D(S0 − x). Then g is increasing
with g(0) < 0 and g(S0) > 0, hence by the intermediate value theorem, there is
a unique θ ∈ (0, S0) such that g(θ) = 0. We will show that S∞ ≥ θ . If not, then
since B∞

s ≤ Y S0 by the proof of Lemma 1, it follows from Corollary 2.4 in [30]—a
consequence of the famous Fluctuation Lemma—applied to (2) that

0 ≥ lim inf
t→∞

[
D(S0 − S∞) − f (S∞)Bs(t)

Y

]
≥ D(S0 − S∞) − f (S∞)S0

> D(S0 − θ) − f (θ)S0,

which contradicts that g(θ) = 0.

4 Analysis of the extreme cases p = 0 and p = 1

First we study the cases where antibiotic is either present or absent for all times. Our
conclusions are the expected ones: When antibiotic is present continuously, all sus-
ceptible cells are either killed or washed out (note that none of the persister cells revert
to the susceptible state). Consequently, since their rate of formation kl f (S)Bs tends
to zero, all persisters are ultimately washed out.

When the population is never exposed to antibiotics, then ultimately the population
will consist of a mixture of susceptible and persister cells, provided the dilution rate
is not too high, as made precise below in condition (7) (Notice that the left-hand side
in (7) is an increasing function in D by (5) which is 0 when D = 0.). Moreover, the
system is uniformly persistent.

Theorem 1 1. Case p = 1 (continuous antibiotic dosing). The eradication steady
state (Bs, Bp, S) = (0, 0, S0) of system (1)–(3) with (4) is globally asymptotically
stable.

2. Case p = 0 (no antibiotic dosing). Assume that

D + kl
D2

kg + D(1 − kl)
< f (S0). (7)

The eradication steady state (Bs, Bp, S) = (0, 0, S0) is unstable, and there exists
a unique positive steady state (Bs, Bp, S) = (B∗

s , B∗
p, S∗) which is locally asymp-

totically stable. System (1)–(3) with (4) is uniformly persistent. More precisely,
there is some ε > 0 (independent of initial conditions), such that all solutions
with Bs(0) + Bp(0) > 0, have the property that:

Bs(t) > ε and Bp(t) > ε, for all sufficiently large t.

123



Failure of antibiotic treatment in microbial populations 569

Proof 1. If p = 1, then kd(t) ≡ kd and kg(t) ≡ 0 for all t . By (6) it follows that for
all solutions, Ḃs ≤ −DBs , and hence Bs(t) → 0 as t → ∞. This suggests that
we should study the linear limiting system

Ḃp = −DBp

Ṡ = D(S0 − S)

whose solutions clearly converge to (Bp, S) = (0, S0). The conclusion now fol-
lows immediately by applying Theorem F.1 in [27].

2. If p = 0, then kd(t) ≡ 0 and kg(t) = kg for all t . By linearizing, we find that the
Jacobian matrix at the eradication steady state (0, 0, S0) is

⎛
⎜⎝

(1 − kl) f (S0) − D kg 0

kl f (S0) −(kg + D) 0

− f (S0)
Y 0 −D

⎞
⎟⎠ ,

which has a negative eigenvalue −D. The two other eigenvalues are those of the
matrix (

(1 − kl) f (S0) − D kg

kl f (S0) −(kg + D)

)
,

whose determinant is negative because of (7). Hence, the Jacobian matrix at
(0, 0, S0) has one positive and two negative eigenvalues, and thus it is unstable.
Let us next establish the existence of the unique positive steady state (B∗

s , B∗
p, S∗).

If such a steady state exists, it must satisfy the following equations:

A(S)B = 0 (8)

f (S)Bs = Y D(S0 − S), (9)

where we used the following notation:

A(S) =
(

(1 − kl) f (S) − D kg

kl f (S) −(kg + D)

)
, B =

(
Bs

Bp

)
.

Before attempting to solve (8)–(9), we note that A(S) is quasi-monotone (i.e., its
off-diagonal entries are all non-negative) and irreducible (we can exclude S = 0
from the analysis). Then by the Perron–Frobenius theorem [4] it has a real dom-
inant simple eigenvalue with a corresponding (entry-wise) positive eigenvector.
The second eigenvalue is real as well (but distinct from the dominant one) since
A(S) is two-dimensional.
We start by calculating

det(A(S)) = −(kg + D(1 − kl)) f (S) + D(kg + D), (10)
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which is decreasing in S because f (S) is increasing and because of (5). Since
f (0)= 0, it follows that det(A(0))> 0, and thus both eigenvalues of A(0) are
negative because the trace of A(0) is negative. From the previous study of the
linearization at the eradication steady state (0, 0, S0), we already know that
det(A(S0))< 0, and thus that A(S0) has one positive and one negative eigen-
value. By the intermediate value theorem, it follows that there is a unique S∗ such
that det(A(S∗))= 0. For all S < S∗, we have that det(A(S))> 0, and thus A(S)

has two negative distinct eigenvalues. By continuity of the eigenvalues of A(S),
the matrix A(S∗) has one negative eigenvalue, and its dominant eigenvalue is nec-
essarily 0. The Perron–Frobenius theorem implies that the eigenvector of A(S∗)
corresponding to the dominant eigenvalue 0 is a positive vector B∗:

A(S∗)B∗ = 0.

But eigenvectors are only unique up to multiplication by a scalar, and so it
may appear as if there are infinitely many possible positive choices for B∗.
Equation (9) determines B∗ uniquely however, since it fixes the value of B∗

s
to DY (S0−S∗)/ f (S∗), and this in turn will determine the value of B∗

p since
(B∗

s , B∗
p)

T must be an eigenvector of A(S∗) associated to the dominant eigen-
value 0. In summary, we have established that there is a unique positive steady
state (Bs, Bp, S)T = (B∗

s , B∗
p, S∗)T .

To show that it is locally stable we determine the characteristic polynomial of
the Jacobian matrix evaluated at (B∗

s , B∗
p, S∗)T . The calculation is lengthy but

straightforward and therefore omitted, and yields the following polynomial:

λ3 + a2λ
2 + a1λ + a0,

where we have used the fact that det(A(S∗)) = 0. The ai are as follows:

a2 = (
D − (1 − kl) f (S∗) + kg + D

) +
(

D + f ′(S∗)B∗
s

Y

)

a1 = (
D − (1 − kl) f (S∗) + kg + D

) (
D + f ′(S∗)B∗

s

Y

)

+ (1 − kl) f (S∗) f ′(S∗)B∗
s

Y

= (
D + kg + D

) (
D + f ′(S∗)B∗

s

Y

)
− (1 − kl) f (S∗)D

a0 = (
D(kg + D)

) (
f ′(S∗)B∗

s

Y

)
=: (α) (β)

Since tr(A(S∗)) < 0, it follows that a2, a1 and a0 are all positive. It suffices by
the Routh–Hurwitz criterion to show that

a1a2 − a0 > 0.
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But since a2 > β, it suffices to show that

a1 > α,

or equivalently, that

D

(
D + f ′(S∗)B∗

s

Y

)
+ (kg + D)

f ′(S∗)B∗
s

Y
− (1 − kl) f (S∗)D > 0.

Since f ′ ≥ 0, this is satisfied if

D2 − (1 − kl) f (S∗)D > 0,

or if

f (S∗) <
D

1 − kl
,

where we recall that 1 − kl > 0 by (5). Now, from det(A(S∗)) = 0, it follows that

f (S∗) = D(kg + D)

kg + (1 − kl)D
.

It is easily verified that

D(kg + D)

kg + (1 − kl)D
<

D

1 − kl
, (11)

is satisfied which shows that (B∗
s , B∗

p, S∗)T is locally asymptotically stable.
Finally, uniform persistence of (1)–(3) with (4) can be established by an applica-
tion of Theorem 4.6 in [30]. Using the notation of that reference, we have here
that

X1 = R
3+, X2 = ∂R

3+, Y2 = {(Bs, Bp, S)T |Bs = Bp = 0, S ≥ 0},
�2 = {(0, 0, S0)T },

and �2 has an acyclic isolated covering {(0, 0, S0)T }. Moreover, {(0, 0, S0)T } is
a weak repellor for X1, because (0, 0, S0)T is an unstable hyperbolic steady state
with a stable manifold that does not intersect X1, although we do not show that
here. The steps of the proof are the same as those in the proof of uniform persis-
tence of a within-host virus dynamics model in [15], and are therefore omitted.

5 The case of periodic dosing: p ∈ (0, 1)

In this section we deal with the τ -periodic model (1)–(3) with (4), assuming that
p ∈ (0, 1). We will also assume that the dilution rate is not too large, as in condition
(7) of Theorem 1.
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Notice that system (1)–(3) with (4) has a steady state E0 :=(Bs, Bp, S) = (0, 0, S0),
regardless of the value of p. To determine its stability properties, we define z =
(Bs, Bp, S − S0) and calculate the τ -periodic variational equation at E0:

ż =
⎛
⎜⎝

(1 − kd(t) − kl) f (S0) − D kg(t) 0

f (S0)kl −(kg(t) + D) 0

− f (S0)
Y 0 −D

⎞
⎟⎠ z.

One of the Floquet multipliers of this system is e−Dτ (which is of course inside the
unit circle of the complex plane). The other two Floquet multipliers are those of the
following system:

ẋ =
(

(1 − kd(t) − kl) f (S0) − D kg(t)

f (S0)kl −(kg(t) + D)

)
x

Using (4), these Floquet multipliers are the eigenvalues of the following matrix:

	 := e(1−p)τ A2 epτ A1 , (12)

where

A1 :=
(

(1 − kd − kl) f (S0) − D 0

kl f (S0) −D

)
, and

A2 :=
(

(1 − kl) f (S0) − D kg

kl f (S0) −(kg + D)

)
(13)

are quasimonotone matrices. Notice also that all eigenvalues of A1 are in the open
half-plane by (6), and that A2 has one negative and one positive eigenvalue, as shown
in the proof of Theorem 1.

Since A1 and A2 are quasi-monotone, it follows that their matrix exponentials
are (entry-wise) non-negative matrices and then their product 	 is a (entry-wise)
positive matrix whose spectral radius ρ(	) is an eigenvalue by the Perron–Frobenius
theorem [4]. Consequently, to determine stability of E0, we need to establish whether
or not ρ(	) is inside the unit circle: If ρ(	) < 1, then E0 is locally asymptotically
stable. If ρ(	) > 1, then E0 is unstable. Summarizing, we have established

Theorem 2 Let p ∈ (0, 1), and assume that (7) holds. Then the steady state E0 =
(0, 0, S0) is locally stable for (1)–(3) with (4) if ρ(	) < 1, but unstable if ρ(	) > 1.

Our main concern is knowing how ρ(	) varies as a continuous function of p
(this variation is continuous since eigenvalues of a matrix are continuous functions
of its entries, and clearly the entries of 	 are continuous in p). For p = 0 (never
using antibiotic), and hence also for p near 0 by continuity of ρ(	), we have that
ρ(	) = ρ(eτ A2) > 1 because A2 has a positive eigenvalue. This is in accordance with
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Theorem 1 where it was shown that the microbial population persists uniformly.
For p = 1 (using antibiotic continuously) we have by (6) that ρ(	) = ρ(eτ A1) =
e−Dτ < 1. The inequality also holds for p near 1. This is in accordance with The-
orem 1 as well because it was shown there that all solutions converge to E0 in this
case.

6 Conditions for global treatment failure

In this section we show that the spectral radius ρ(	) also plays a key role in the global
behavior of system (1)–(3) with (4) and p ∈ (0, 1). We will show that if ρ(	) > 1,
then not only is E0 unstable as we have shown in Theorem 2, but treatment fails glob-
ally, because both cell populations persist uniformly. In addition we will show that
there are positive periodic solutions.

Theorem 3 Let p ∈ (0, 1), and assume that (7) holds. If ρ(	) > 1, then treatment
fails and the population is uniformly persistent. More precisely, there is some ε∗ > 0
(independent of initial conditions), such that all solutions of (1)–(3) with (4) and
Bs(0) > 0, have the property that:

Bs(t) > ε∗, and Bp(t) > ε∗, for all sufficiently large t.

Moreover, there are τ -periodic solutions (Bs(t), Bp(t), S(t)) with Bs(t), Bp(t) > 0
for all t .

Proof Define the following matrix:

	̃(ε) = e(1−p)τ Ã2(ε) epτ Ã1(ε),

where

Ã1(ε) :=
(

f (S0 − ε) − (kd + kl) f (S0 + ε) − D 0

kl f (S0 − ε) −D

)
, and

Ã2(ε) :=
(

f (S0 − ε) − kl f (S0 + ε) − D kg

kl f (S0 − ε) −(kg + D)

)

Notice that 	̃(0) = 	, and thus since ρ(	) > 1, it follows that

ρ(	̃(ε)) > 1, for all sufficiently small ε > 0, (14)

as well, because the spectral radius of any matrix is continuous with respect to its
entries. We fix some ε > 0 such that (14) holds.

We will first show that Bs is uniformly weakly persistent, i.e., that there is some
ε′ > 0 such that if Bs(0) > 0, then B∞

s ≥ ε′. By contradiction, if Bs is not uniformly
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weakly persistent, then there is some solution (Bs(t), Bp(t), S(t)) with Bs(0) > 0
such that

B∞
s ≤ Y D

2 f (S0)
ε. (15)

By Corollary 2.4 in [30] applied to (3), and since S∞ ≤ S0 by (3), we have that

0 ≥ lim inf
t→∞

[
D(S0 − S∞) − f (S∞)Bs(t)

Y

]

≥ D(S0 − S∞) − f (S0)B∞
s

Y
,

and hence by (15) that

S∞ ≥ S0 − ε

2
.

Thus, for some T ∗ > 0, there holds that S0 − ε ≤ S(t) ≤ S0 + ε for all t ≥ T ∗ (the
latter inequality follows from the proof of Lemma 1). It follows from (1)–(2), that for
all t ≥ T ∗:

(
Ḃs

Ḃp

)
≥

(
f (S0 − ε) − (kd(t) + kl) f (S0 + ε) − D) kg(t)

kl f (S0 − ε) −(kg(t) + D)

)(
Bs

Bp

)
(16)

where the vector inequalities should be interpreted componentwise. Notice that the
vector field on the right-hand side of (16) is that of a τ -periodic, cooperative lin-
ear system whose principal fundamental matrix solution evaluated over one period τ

equals 	̃(ε). By Kamke’s comparison Theorem (see e.g., Theorem B.1 in Appendix
B of [27]) it follows that for all t ≥ T ∗, the vector (Bs(t), Bp(t))T is not smaller
(component-wise) than the solution starting in (Bs(T ∗), Bp(T ∗))T of the τ -periodic,
cooperative linear system with vector field given in the right-hand side of (16). But all
non-zero, non-negative solutions of the linear system diverge because ρ(	̃(ε)) > 1.
Then so does (Bs(t), Bp(t)), and this contradicts (15). We have thus shown that Bs is
uniformly weakly persistent.

Next we establish that Bs is in fact uniformly strongly persistent. This follows from
Theorem 1.3.3 in [32], applied to the map P which maps (Bs(0), Bp(0), S(0))T ∈ X
to (Bs(τ ), Bp(τ ), S(τ ))T , where X := {(Bs, Bp, S)T ∈ R

3+|Bs + Bp + Y S ≤ Y S0},
X0 := {(Bs, Bp, S)T ∈ X | Bs 	= 0} and ∂ X0 := {(Bs, Bp, S)T ∈ X | Bs = 0}. The
map P is continuous and maps X0 into itself, and it has a global attractor because
it is compact and dissipative. It follows that there is some ε∗

1 > 0, independent of
initial conditions, such that if Bs(0) > 0, then lim infn→∞ Bs(nτ) > ε∗

1 , and also that
lim inf t→∞ Bs(t) > ε∗

1 by Theorem 3.1.1 in [32].
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Next we show that uniform strong persistence of Bs , implies uniform strong per-
sistence of Bp. Consider equation (2) and notice that for all sufficiently large t :

Ḃp ≥ kl f (θ)Bs − (kg(t) + D)Bp ≥ kl f (θ)
ε∗

1

2
− (kg(t) + D)Bp,

where θ is the positive constant from Lemma 2. It is not hard to show that the linear
equation

ż = kl f (θ)
ε∗

1

2
− (kg(t) + D)z,

has a positive τ -periodic solution p(t) and that all non-negative solutions converge to
it. Therefore, it follows that for all sufficiently large t ,

Bp(t) ≥ p∞
2

,

establishing uniform strong persistence for Bp, since p∞ is independent of initial con-
ditions. We conclude the proof of uniform strong persistence of Bs and Bp by setting
ε∗ = min{ε∗

1 ,
p∞
2 }.

Finally, to show that there are τ -periodic solutions with Bs(t), Bp(t) > 0, we apply
Theorem 1.3.6 from [32] applied to the continuous map P defined above. We have
already remarked that this map is continuous, maps X0 into itself, is dissipative and
compact, and we have just proved that it is uniformly strongly persistent with respect
to (X0, ∂ X0). Observe also that X0 is relatively open in X , and that X0 is convex. Then
by Theorem 1.3.6 from [32], the map P has a fixed point in X0, and this in turn implies
the existence of τ -periodic solutions with Bs(t) > 0 for (1)–(3). The same argument
as the one used above to establish uniform strong persistence of Bp(t), shows that
these τ -periodic solutions are such that Bp(t) > 0 as well.

7 Numerical example

In the following, we describe results of numerical simulations of the model equations.
These numerical experiments illustrate the intermediate cases of periodic dosing. In
particular, we see that the spectral radius provides a simple test for the success or fail-
ure of a dosing strategy. The period of application is by far the simplest lab control that
is available, we vary the dose duration while keeping the other parameters fixed. We
use the following numerical values: The per capita growth rate is of Michaelis-Menten
type:

f (S) = µS

ks + S
, where µ = 0.417 hs−1 and ks = 0.2 mgl−1,

which are typical values [25]. Parameters describing the loss/gain and period are

kd = 3, kl = 0.1, kg = 0.5 h−1, kl = 0.001 h−1 and τ = 10 h.
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Fig. 1 Spectral radius of 	 for
p ∈ [0, 1] (kd = 3, other
parameters in text)

These are consistent with values in [9], that were determined by fitting the experi-
ments using E. coli [19].

The chemostat setting requires that we specify two additional parameters:

D = 0.1 h−1 and S0 = 1 mgl−1.

It can be easily verified that these choices satisfy the conditions (6) and (7). Note that
there is no need to specify the yield coefficient Y in order to calculate ρ(	). Indeed,
the matrix 	 in (12) does not depend on Y .

We note that the bulk of the results shown in this section agree with experimental
expectations [5,22]; however, we are unaware of any direct experimental results avail-
able for comparison. These results are consistent with mathematical results that have
been described before [9,10] with additional insight that there are only mild require-
ment on the transition rate from susceptible to persister in order for periodic dosing to
be successful. This suggests that a simple experiment done in a chemostat could verify
that there is an optimal strategy for eliminating a population of bacteria. Moreover,
our analysis indicates that, although we have fixed the kinetics in the simulations, the
results should generalize to a variety of bacteria and nutrients.

The graph of the spectral radius ρ(	) in terms of p, determined using formula (12),
is given in Fig. 1. We see that ρ(	) = 1 when p is approximately equal to 0.241.
Clearly, ρ(	) is not monotone, and it has a global minimum of approximately 0.123
which is achieved at p ≈ 0.647 (determined numerically using Mathematica). Thus,
the optimal strategy in a dosing experiment with a period of τ = 10 h occurs for a
dosing duration of pτ ≈ 6.5 h. Here, optimality means that eradication happens as
quickly as possible.

Let us also illustrate what happens if p equals approximately 0.205. Then ρ(	)

equals approximately 1.38, implying that treatment fails. It appears that the solution
of (1)–(3) with Y = 1 (and all other parameters as above) starting from the initial
condition (Bs, Bp, S) = (0.3, 0, 0.4) converges to a τ -periodic solution, see Figs. 2
and 3. These observations are in accordance with Theorem 3.

We also see that if p = 1
3 , then ρ(	) equals approximately 0.464. Then it follows

from Theorem 2 that E0 is locally stable. Figures 4 and 5 illustrate this by indicating
that for the solution with the same initial condition (Bs, Bp, S) = (0.3, 0, 0.4) as
above, treatment is successful.
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Fig. 2 Times series for Bs and Bp . (p ≈ 0.205, ρ(	) ≈ 1.38 > 1, so treatment fails)

Fig. 3 Times series for S and Bs + Bp . (p ≈ 0.205, ρ(	) ≈ 1.38 > 1, so treatment fails)

Fig. 4 Times series for Bs and Bp . (p = 1
3 , ρ(	) ≈ 0.464 < 1, so treatment succeeds)

Fig. 5 Times series for S and Bs + Bp . (p = 1
3 , ρ(	) ≈ 0.464 < 1, so treatment succeeds)

Finally, we note that the spectral radius of 	 may be monotone: If we change
the value of kd from 3 to 1, and leave all other parameters unchanged, then ρ(	)

is a decreasing function of p ∈ [0, 1], and achieves its minimum at p = 1. This
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Fig. 6 Spectral radius of 	 for
p ∈ [0, 1] (kd = 1, other
parameters in text)

indicates that for this case, the optimal strategy is to use antibiotics continuously,
see Fig. 6.

8 Conclusions

Bacterial infections are a source of problems in a wide variety of situations including
industrial, environmental and clinical settings. Growing understanding of the inability
of antibiotics and biocides to treat these infections has driven investigations into the
cause of the failure of treatments. It is becoming increasingly evident that persister
cells must play an important role in protecting populations of bacteria. It has been
observed that other protective mechanisms including physiological and physical pro-
cesses are not sufficient to explain the observed failures [8,11]. Moreover, because it
is very difficult to investigate and classify persister cells experimentally, mathematical
modeling can play an important role in supporting hypotheses as well as generating
useful predictions.

We have described and analyzed a general model for the dynamics of persister
formation in response to antibiotic challenge, and have provided a condition for the
success/failure of antibiotic challenge in a chemostat. It relies on the value of a certain
quantity -the spectral radius of a particular matrix- that can be determined analytically
and numerically in terms of the model parameters. If these are known it can be a
useful tool to predict the outcome of a dosing experiment or model simulation alike. It
can also be used to guide the experimentalist in setting up a periodic dosing protocol
which eliminates the bacteria as quickly as possible. These results indicate that peri-
odic dosing is an effective treatment protocol for a variety of bacteria, substantially
strengthening the results in [9]. The theoretical results were also confirmed by direct
numerical simulations.

Acknowledgments Supported by NSF grant DMS-0614651.

References

1. Agur Z, Hassin R, Levi S (2006) Optimizing chemotherapy scheduling using local search heuristics.
Oper Res 54(5):829846

2. Ayati BP, Klapper I (2007) A multiscale model of biofilm as a senescence-structured fluid. SIAM Multi
Model Sim 6:347–365

123



Failure of antibiotic treatment in microbial populations 579

3. Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S (2005) Bacterial persistence as a phenotypic
switch. Science 305:1622–1625

4. Berman A, Plemmons R (1994) Nonnegative matrices in the mathematical sciences. SIAM,
Philadelphia

5. Bigger J (1944) Treatment of stapphylococcal infections with penicillin by intermittent sterilisation.
Lancet 244(6320):497–500

6. Burden T, Ernstberger J, Fister R (2004) Optimal control applied to immunotherapy. Discrete Contin-
uous Dyn Syst Ser B 4(1):135146

7. Cappuccio A, Elishmereni M, Agur Z (2007) Optimization of interleukin-21 immunotherapeutic
strategies. J Theor Biol 248(2):259–266

8. Chambliss JD, Hunt SM, Stewart PS (2006) A three-dimensional computer model of four hypothetical
mechanisms protecting biofilms from antimicrobials. Appl Environ Microbiol 72:2005–2013

9. Cogan NG (2006) Effects of persister formation on bacterial response dosing. J Theor Biol 238:
694–703

10. Cogan NG (2007) Incorporating toxin hypothesis into a mathematical model of persister formation
and dynamics. J Theor Biol 248:340–349

11. Cogan NG, Cortez R, Fauci LJ (2005) Modeling physiological resistence in bacterial biofilms. Bull
Math Biol 67(4):831–853

12. Costerton J (2001) Cystic fibrosis pathogenesis and the role of biofilms in persistent infection. Trends
Microbiol 9:50–52

13. Cushing J (1998) An introduction to structured population dynamics. SIAM, Philadelphia
14. Davies D (2003) Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discovery

2:114–122
15. De Leenheer P, Smith HL (2003) Virus dynamics: a global analysis. SIAM J Appl Math 63:

1313–1327
16. Desai M, Buhler T, Weller P, Brown M (1998) Increasing resistance of planktonic and biofilm cultures

of Burkholderia cepecia × to ciproflaxacin and ceftazidime during exponential growth. J Antimicrob
Chemother 42:153–160

17. File TM Jr (1999) Overview of resistance in the 1990s. Chest 115:3–8
18. Imran M, Smith HL (2006) The pharmacodynamics of antibiotic treatment. J Comput Math Methods

Med 7:229–263
19. Keren I, Kaldalu N, Spoering A, Wang Y, Lewis K (2004) Persister cells and tolerance to antimicro-

bials. FEMS Microbiol Lett 230:13–18
20. Klapper I, Gilbert P, Ayati BP, Dockery J, Stewart PS (2007) Senescence can explain microbial per-

sistence. Microbiology 153:3623–3630
21. Lappin-Scott HM, Costerton JW (eds) (1995) Microbial biofilms. In: Mechanisms of the protection of

bacterial biofilms from antimicrobial agents. Cambridge University Press, Cambridge, pp 118–130
22. Lewis K (2001) Riddle of biofilm resistance. Antimicrob Agents Chemother 45:999–1007
23. Lewis K (2005) Persister cells and the riddle of biofilm survival. Biochem Moscow 70:267–285
24. Neu HC (1992) The Crisis in antibiotic resistance. Science 257(5073)
25. Roberts ME, Stewart PS (2004) Modeling antibiotic tolerance in biofilms by accounting for nutrient

limitation. Antimicrobial Agents Chemother 48:4852
26. Stewart EJ, Madden R, Paul G, Taddei F (2005) Aging and death in an organism that reproduces by

morphologically symmetric division. PLoS Biol 3:295–300
27. Smith HL, Waltman P (1995) The theory of the chemostat. Cambridge University Press, Cambridge
28. Spoering A, Lewis K (2001) Biofilms and planktonic cells of pseudomonas aeruginosa have similar

resistance to killing by antimicrobials. J Bacteriol 183(23):6746–6751
29. Szomoloy B, Klapper I, Dockery J, Stewart P (2005) Adaptive responses to antimicrobial agents in

biofilms. Environ Microbiol 7(8):1186–1191
30. Thieme HR (1993) Persistence under relaxed point-dissipativity (with applications to an endemic

model). SIAM J Math Anal 24:407–435
31. Wiuff C, Anderson D (2007) Antibiotic treatment in vitro of phenotypically tolerant bacterial popula-

tions. J Antimicrob Chemother 59(2):254–263
32. Zhao X-Q (2003) Dynamical systems in population biology. Springer, New York

123


	Failure of antibiotic treatment in microbial populations
	Abstract
	1 Introduction
	2 Model
	3 Preliminary results
	4 Analysis of the extreme cases p=0 and p=1
	5 The case of periodic dosing: p(0,1)
	6 Conditions for global treatment failure
	7 Numerical example
	8 Conclusions
	Acknowledgments
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


