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Abstract

This errata is necessary to address a crucial typo and to discuss a minor error.
In equation (5), there is a missing derivative which can make reproduction
of these results difficult to attain. Next, our particular choice of I'(t) = 0 to
produce this results in this paper are physically irrelevant. Instead, we make
a choice of T'(t) = 1, in which we see, similar results can be achieved as those
produced in the paper.

1. The Two-Phase Model

This is the reduced two-phase model given in the original paper.
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The osmotic pressure function (not given explicitly in the original paper)
takes the form 1)(¢) = ko? (1 — o), where ¢y is a reference volume fraction.
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2. General Reduction

The transformation we found is

u(t,z) = ?—I—f(x— 1/F(t)dt),

ot ) = ? +g (m L /F(t)dt) , (4)

oi(t,z) = m (:B — é/l“(t)dt) :

where I', assumed to be smooth, is an arbitrary function of ¢, and « is an
arbitrary constant. Applying the transformation given by (4) to (1-3) reduces
the system to the ordinary differential equations given by
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(mf) —G =0,

((1=m)g)' +G =0, (5)
pa (1 —=m) (mf') — pam (1 —m)g')

—ka(1 —m)m’(3m — 2¢9) — Em(1 —m)(f — g) = 0, (6)

where m, f, and g are all functions of r = = — 1 [T'(¢)d¢ that are to be
determined.

3. Logistic Growth in an Inviscid System

Under this section we made the following case for I'(f) = 0, but this
particular choice trivializes the invariant surface condition. In other words,
to derive the transformation (4), we need to solve the system

auy + D(t)u, = 4T(), (7)
avy + T (v, = LT(1), (8)
ady +L(t)d, = 0. (9)

Instead, we present the case of I'(t) = 1, and let a = 1000. With these
choices, the graphs remain virtually unchanged.



3.1. T(t) =1

For
0 ifz <0
w(p(2,0),0)=<¢x if0<x<.b (10)
0.5 ifx > .5,
we have
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Figure 1: For initial conditions given by (10) (top), this shows the characteristic curves for
growth given by k1 = 1 (left) and ky = 5 (right), producing shocks. As growth increases,
we see more rapid shockwaves with high frequencies, where as small growth is slow to
produce shocks and have lower frequencies.



And with

0.5 ifxr<0
u(p(x,0),0)=<qx f0<z<.5 (11)
0 ifz>.5
we get
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Figure 2: For initial conditions given by (11), the characteristic curves for growth given
by k1 = 1 (left) and k1 = 5 (right) we see rarefactions. As growth increases, we see the
loss of information between characteristics increases with wider rarefactions.



