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Group Algebras

Let R be a ring (with unity).
Let G be a group.

De�nition

An element of group algebra R[G ] is the formal sum:∑
gn∈G

rngn

Addition is component wise (as a free module).
Multiplication follows from the products in R and G ,
distributivity and commutativity between R and G .

Note: If G is in�nite only �nitely many ri are non-zero.
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Group Algebras

A group algebra is itself a ring.
In particular, a group under multiplication.

A set M with a binary operation is called a magma.

This process can be generalized to magmas.
The resulting algebra often inherit the properties of M .
Divisibility is a notable exception.
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Loops

In particular, loops are not associative.
It is useful to de�ne some weaker properties.

power associative: the sub-algebra generated by
any one element is associative.

diassociative: the sub-algebra generated by any
two elements is associative.

associative: the sub-algebra generated by any
three elements is associative.
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Loops

Power associativity gives us (xx)x = x(xx).
This allows xn to be well de�ned.

Diassociative loops have two sided inverses, x−1.
Diassociative gives us (xy)x−1 = x(yx−1).
This allows conjugation to be well de�ned.
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Loop Algebras

Let L be a loop.

De�nition

An element of loop algebra R[L] is the formal sum:∑
ln∈L

rnln

Addition is component wise (as a free module).
Multiplication follows from the products in R and L,
distributivity and commutativity between R and L.

Note: If L is in�nite only �nitely many rn are non-zero.
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Octonion loop

Let O be the loop de�ned by this table.

e0 e1 e2 e3 e4 e5 e6 e7
e1 −e0 e3 −e2 e5 −e4 −e7 e6
e2 −e3 −e0 e1 e6 e7 −e4 −e5
e3 e2 −e1 −e0 e7 −e6 e5 −e4
e4 −e5 −e6 −e7 −e0 e1 e2 e3
e5 e4 −e7 e6 −e1 −e0 −e3 e2
e6 e7 e4 −e5 −e2 e3 −e0 −e1
e7 −e6 e5 e4 −e3 −e2 e1 −e0

Note: There are really 16 elements, ± for each shown.
Formally, −en is really εen, where ε

2 = 1 and commutes.
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Other Representations

Let e0 be the identity and in be indexed mod 7.
Let i2n = −e0 and inim = −imin (m 6= n).
Let inin+1 = in+3. This is isomorphic to O.

One such mapping is: i1 = e1, i2 = e2, i3 = e4.
This forces i4 = e3, i5 = e6, i6 = −e7, i7 = e5.
Also in+1in+3 = in and in+3in = in+1.

This representation exhibits a seven fold symmetry in O.
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Other Representations

Fano Plane

7 lines and 7 points.
Central circle is a line.

Three points on each line.
Three lines at each point.

Points labeled with roots.
Lines labeled to indicate
positive products.
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Other Representations

John H. Conway Gino Fano
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Octonion Algebras

(e1e2)e4 = e3e4 = e7 = −e1e6 = −e1(e2e4).
Thus O is not associative.

Also note that any two elements generate
the associative quaternion group.
Thus O is diassociative.

The anti-automorphism, q, toggles the sign of e1 to e7.
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Octonion Algebras

Let I = 〈1 + ε〉 if 1 6= −1 or 〈1〉 otherwise.
This formally associates ε with −1 in R ,
unless char(R) = 2.
OR is the loop algebra R[O]/I . O is OR.

N(q) = qq = qq
These are composition algebras, N(xy) = N(x)N(y).

Over R only R, C, H and O are positive de�nite
composition algebras.
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Discovery of the Octonions

William R.

Hamilton
John T. Graves Aurther Cayley
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Division Algebras

Theorem (Moufang's theorem)

Ruth

Moufang

Let an Loop L satisfy

xy · zx = x · yz · x
x · y · xz = xyx · z
xy · z · y = x · yzy

Let x , y and z be elements of L.
If x(yz) = (xy)z , then x , y and z
generate an associative sub-loop
(i.e a group).

Loops with these properties are Moufang loops.



Split Octonions

Prather

Loop Algebras

Octonions

Moufang Loops

Split-Octonions

Analysis

Malcev Algebras

Summary

Moufang Loops

All Moufang loops are diassociative.
Thus the RHS are well de�ned.

In particular, the units of OR are Moufang loops.

If K is a �eld we can de�ne
q−1 = q/N(q).
This makes OK a division algebra.
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Projective spaces

Theorem (Desargues' theorem)

Two triangles are in perspective axially i� they are in
perspective centrally.

This was proved for Euclidean spaces.
It applies to all projective spaces, if dim 6= 2.

Hilbert found counter examples when dim = 2.
Moufang showed that if an algebra is non-associative
it's projective space is non-Desargues.
In particular, she was interested in �Cayley Planes�.
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Projective spaces

Thus there is a non-Desarguesian octonionic projective
plane, but no higher octonionic projective spaces.

Girard Desargues David Hilbert
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Parker Loop

The Golay code is a 12 dimensional linear code
over F2 with a natural representation in F24

2 .
They can be viewed as sets of bits.
The Parker Loop is a Moufang loop created as
a double of the Golay Code, by adding a sign bit.

Let HW (x) be the cardinatity of code point x.
x2 = (−1)HW (x)/4

xy = (−1)HW (x∩y)/2yx
x(yz) = (−1)HW (x∩y∩z)(xy)z
Note: The various sign choices here are isomorphic.
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Parker Loop

Parker showed that this is indeed a Moufang Loop.

Conway used this loop to simplify Griess' construction
of the Fischer-Griess Monster group.
(Griess's constructed it as the automorphism group of a
commutative, non-associative, algebra).

The monster group plays a signi�cant role in
the classi�cation of �nite simple groups.
So Moufang loops play a role in one of the biggest,
if not most important, theorems of modern mathematics.
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Parker Loop

Marcel J. E.

Golay
Richard A. Parker Robert Griess
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Paige Loops

Moufang loop are diassociative.
Thus conjugation is well de�ned.

This allows us to de�ne a normal sub-loop,
and simple Moufang loops in the usual way.

Paige showed that the units of split-octonion
algebras over a �nite �eld are simple.
Liebeck showed that their are no other cases.

Finite simple Moufang loops are called Paige loops.
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Paige Loops

Lowell Paige Martin Liebeck
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Split-Octonions

Consider OC.
Clearly the real parts of this algebra form O.
However, it contains another algebra over R.
Speci�cally, multiply each en, n ≥ 4 by

√
−1.

The resulting algebra has a split signature.
Thus they are called the split-octonions, O−.

Rename en as in for 0 < n < 4, since i2n = −1.
Also,

√
−1en as jn for n ≥ 4, since j2n = 1.
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Split-Octonions

N(q) = qq = r 20 + r 21 + r 22 + r 23 − r 24 − r 25 − r 26 − r 27
O− not positive de�nite, as N(j4) = −1.

Infact, O− has zero divisors, N(1 + j4) = 0.
The zero divisors all have N(q) = 0.

O− has the composition property.
The elements with N(q) 6= 0 are invertible.
The invertible elements form a loop.
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Split Sub-Algebras

q is a split root if N(q) = −1 (proper if N(q) = 1).

Any split root de�nes a split-complex algebra C−.
Any two orthogonal split roots de�ne a
split-quaternion algebra, H−.

Any sub-algebra is either one of these, C or H.
In particular, the algebra generated by a proper root
and an orthogonal split root is also H−.
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Lorentz Transforms

C− ∼= R× R. This algebra describes the
Lorentz transformations in one dimension.

H− ∼= M2(R). This algebra describes the
Lorentz transformations in two dimensions.
The third basis, N(i3) = 1, models
Thomas precession.

Can we use O− to model Lorentz transformations
in three dimensions? Cl(0, 3) is more standard.
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Vector Representation

Let ~J be three split generators,
interpreted as an axial vector.
Let ~I represent a polar vector.
Let k represent a pseudo scalar.
Up to a sign convention on k we get the following table:

e ~J ~I k

~J
· : e

× : ~I

· : −k
× : − ~J −~I

~I
· : k

× : − ~J
· : −e
× : ~I

− ~J

k ~I ~J e
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Zorn Matrix Representation

Max Zorn

Known for

his lemma

These representations of C− and H−
use idempotents as a basis.
This halves the cost of multiplication.

Zorn found a similar representation for O−.
Let a = e0 + j4, b = e0 − j4.
Let I = a 〈i1, i2, i3〉 and J = −b 〈i1, i2, i3〉.

q =

(
a I
J b

)
N(q) = det(q) = ab − J · I
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Zorn Matrix Representation

This product is then O−.

q′′ = qq′

a′′ = aa′ + I · J ′

I ′′ = aI ′ + Ib′ + J × J

J ′′ = Ja′ + bJ ′ − I × I

b′′ = J · I ′ + bb′

This is just matrix multiplication,
plus two cross products.
Note: There are several sign conventions possible,

impacting only the cross product terms.
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Fueter Analysis

In 1936 Fueter developed the theory of
analysis on the quaternions.

The di�erence operator is too strict,
only linear functions have a derivative.

Taylor series are too loose.
Functions exist that converge on domains,
but are not what we intuitively feel are smooth.

Generalizing the concept of analytic is the just right.
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Fueter Analysis

The quaternions are not commutative,
so we have to de�ne left and right analytic.

This uses The following Dirac operators:
D =

∑
i ei

∂
∂ri

D =
∑

i ei
∂
∂ri

A smooth function from a domain in R8

to the octonions is left (right) analytic if:
Df =

∑
i ei

∂f
∂ri

= 0 (fD =
∑

i
∂f
∂ri
ei) = 0

Note that DD = DD is the Laplacian operator.
Thus analytic functions are harmonic functions.
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Fueter Analysis

Next we view the quaternions as R4,
and generate a Cli�ord algebra over R4.

A quaterion cooresponds to a 1-form, and its exterior
derivative cooresponds to a 3 form � which has precisely
a quaternionic value!

Denote these dr and ?dr , where ? is the Hodge duel.
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Fueter Analysis

Karl Rudolf

Fueter
Brook Taylor Paul Dirac
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Fueter Analysis

Generalizing the Cauchy Kernel, Φ(r) = r
N(r)2

,

plus a bit of integral gymnastics
gives us a version of the Cauchy integral formula.
f (r0) = 1

2π2

∫
∂U

Φ(r − ro) · ?dr · f (r),
with the usual domain restrictions.

From here it is down hill to generalize many of the
theorems of complex analysis, in particular:
The mean value, maximum modulus and
uniform convergence theorems.
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Octonionic Analysis

In 2002 Li and Peng generalized this process to the
octonions. Here associativity comes into play.
Φ(r) = r

N(r)4
,

f (r0) = 3
π4

∫
∂U

Φ(r − ro) · (?dr · f (r)),

In particular,(
3
π4

∫
∂U

(Φ(r − ro) · ?dr) · f (r)
)
− f (r0)

=
∫
U

∑
i [Φ,Dfi , ei ]dV 6= 0.
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Octonionic Analysis

Augustin-Louis

Cauchy
Xingmin Li Lizhong Peng
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Octonionic Analysis

In 2011 Libine generalized this to the split-quaternion.
At zero divisors the Cauchy Kernel becomes zero.
The solution is to complexify the algebra and perturbe it.
Φ(r) = r

(N(r)+iε|r |2)2

If the boundary of our domain crosses the null cone
transversely, the following limit converges.

f (r0) = lim
ε→0

−1
2π2

∫
∂U

Φ(r − ro) · ?dr · f (r)

Any convex domain with the point in the interior will
satisfy this. In particular cubes and spheres.
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Octonionic Analysis

Matvei Libine
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Split-Octonionic Analysis?

Using these two outlines, this very same process
should work for the split octonions!
Deriving the appropriate Cauchy integral formula
is the �rst step in this investigation.

Perhaps something like:
Φ(r) = r

(N(r)+iε|r |2)4

f (r0) = lim
ε→0

−3
π4

∫
∂U

Φ(r − ro) · (?dr · f (r))
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Malcev Algebras

Malcev studies whether one can generalize Lie algebras
in group theory to similar algebras over Moufang loops.

For example, the tangent space of the identity of
a smooth Moufang loop forms a Malcev algebra.

S7, interpreted as the unit octonions in R8

is a quintisential example of a smooth Moufang loop.
The resulting Malcev algebra is equivelent to
the pure octonions with [x , y ] = xy − yx .
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Malcev Algebras

Using the split octonions with N(x) = 1 we get
a smooth Moufang loop on a hyperboloid.
The resulting Malcev algebra is equivelent to the
pure split-octonions with the same product.

If a Moufang loop is a connected, simply connected
and real-analytic, it can be recovered from its
Malcev algebra.

Some formula need to be modi�ed.
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Malcev Algebras

J(x , y , z) = [x , [y , z ]] + [y , [z , x ]] + [z , [x , y ]] 6= 0 but
[J(x , y , z), x ] = J(x , y , [x , z ]).

Let Lx and Rx be the action of left and right
multiplication by x.
[Lx , Ly ]− L[x ,y ] = −2[Lx ,Ry ] = [Rx ,Ry ] + R[x ,y ] 6= 0

In 2006 Eugen Paal demonstrated that one can de�ne
Noether currents and charges whithin this framework.



Split Octonions

Prather

Loop Algebras

Octonions

Moufang Loops

Split-Octonions

Analysis

Malcev Algebras

Summary

Malcev Algebras

Sophus Lie
Anatoly Ivanovich

Malcev
Eugen Paal
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Summary

Octonions are neat!
Split octonions might be neater!
They are related to many exceptional objects.

Much of abstract algebra uses associativity
to get to a well de�ned conjugation.
This machinery applies to Moufang loops.
These tools then apply to create exceptional objects.

They break when pushed too far,
when associativity is strictly needed.
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