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Mathematical modeling has played a significant role in building our understanding of sleep–wake and
circadian behavior. Over the past 40 years, phenomenological models, including the two-process model
and oscillator models, helped frame experimental results and guide progress in understanding the inter-
action of homeostatic and circadian influences on sleep and understanding the generation of rapid eye
movement sleep cycling. Recent advances in the clarification of the neural anatomy and physiology
involved in the regulation of sleep and circadian rhythms have motivated the development of more
detailed and physiologically-based mathematical models that extend the approach introduced by the
classical reciprocal-interaction model. Using mathematical formalisms developed in the field of compu-
tational neuroscience to model neuronal population activity, these models investigate the dynamics of
proposed conceptual models of sleep–wake regulatory networks with a focus on generating appropriate
sleep and wake state transition patterns as well as simulating disease states and experimental protocols.
In this review, we discuss several recent physiologically-based mathematical models of sleep–wake
regulatory networks. We identify common features among these models in their network structures,
model dynamics and approaches for model validation. We describe how the model analysis technique
of fast–slow decomposition, which exploits the naturally occurring multiple timescales of sleep–wake
behavior, can be applied to understand model dynamics in these networks. Our purpose in identifying
commonalities among these models is to propel understanding of both the mathematical models and
their underlying conceptual models, and focus directions for future experimental and theoretical work.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

The field of sleep research has a strong history of using mathe-
matical models to frame understanding of sleep–wake cycling and
circadian rhythms. As we all experience on a daily basis, these
cycles are governed by the inevitable drive for sleep after periods
of wakefulness and the circadian (�24 h) rhythm propagated by
the brain’s suprachiasmatic nucleus (SCN). Within a sleep episode,
additional rhythms occur in the transitions between rapid eye
movement (REM) sleep and non-REM (NREM) or slow wave sleep
with a period of approximately 90 min. These cyclic phenomena
motivated the development of the classical mathematical models
for sleep–wake regulation which include the two-process model
for the timing of sleep based on the interaction of the homeostatic
sleep drive and the circadian rhythm [1,2], coupled oscillator
models for the same interactions [3,4] and the reciprocal interac-
tion model for REM sleep cycling [5,6]. Although generally
phenomenological in nature, each of these mathematical models
had a significant impact on the field by formalizing conceptual
models to guide experimental investigations and providing a
context for interpreting experimental data.

Recent experimental results have clarified more of the anatomy
and physiology underlying sleep–wake control. Most notably,
identification of numerous brainstem and hypothalamic neuronal
populations that have wake or sleep-promoting effects and eluci-
dation of neurotransmitter-mediated interactions among these
populations has led to the formulation of a putative regulatory
network for the control of sleep and wake transitions. While exper-
iments have established clear roles for some populations in such a
network, such as the wake-promoting locus coeruleus (LC) and
dorsal raphe (DR), the role of other populations, such as those
involved in the regulation of REM sleep, are less clear. As described
in more detail below, the classical reciprocal interaction hypothe-
sis for REM sleep has been challenged by recent results implicating
a role for mutually inhibitory interactions among neuronal
populations with REM-promoting and REM-suppressing effects.
However, consensus regarding the exact architecture of an
inhibition-based REM regulatory network has not been reached,
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and competing models for REM sleep regulation are vigorously
debated.

Motivated by these recent results, mathematical models with a
stronger physiological basis have been developed to provide quan-
titative underpinnings for the classical and more recent conceptual
models of a sleep regulatory network [7–12]. Using a range of
mathematical formalisms developed in the field of computational
neuroscience to model neuronal population activity, these models
investigate the dynamics of proposed conceptual models of sleep–
wake regulatory networks with a focus on generating realistic
sleep and wake state transition patterns and appropriate responses
to simulated disease states and experimental protocols. To intro-
duce these models, sample output from two recent sleep–wake
network models is shown in Fig. 1. In Fig. 1A, the network model
[13] simulates stereotypical human sleep where the hypnogram
in the top trace summarizes the transitions in simulated behavioral
state (wake, NREM sleep or REM sleep) dictated by the transitions
in activity of the associated state-promoting neuronal populations
shown in the lower traces (average firing rate (in Hz) of wake-pro-
moting (fW), NREM sleep-promoting (fS) and REM sleep-promoting
(fR) neuronal populations). The model includes a homeostatic sleep
drive variable (H), similar to Process S of the two-process model,
that increases during wake and decreases during sleep to promote
transitions between these two states. Additionally, the network ac-
counts for the influence of the circadian rhythm on sleep–wake
behavior by including input from the SCN (fSCN) that varies on a
24 h time scale. In Fig. 1B, the sleep–wake network model
[11,14] simulates typical rat sleep, as shown in the experimentally
recorded hypnogram of rat sleep–wake behavior during the day
(top trace). The highly variable nature of rat sleep is accounted
for by including noise sources in the model. Below we discuss
the anatomy and physiology that these and other recent
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sleep–wake network models are based on (Section 2) and the
mathematical formalisms used to construct them (Section 4).

These recent physiological network models can play an impor-
tant role in the scientific investigation of neuronal sleep–wake
regulatory mechanisms because experimental investigations are
uniquely limited by the fact that the outcome measurement,
namely sleep–wake behavior, only exists in the intact animal.
Key characteristics of the sleep or waking state have not been
observed in reduced experimental preparations, such as brain slice,
in situ preparation or culture of disassociated cells, which could
permit close study of the time-varying activity of neuronal interac-
tions. Thus, the experimental techniques available to probe neuro-
nal regulatory mechanisms are limited to those that can be
conducted in vivo without disrupting sleep, or post-mortem stud-
ies that can identify anatomy but not dynamic interactions. Phys-
iologically-based mathematical models can bridge the gaps left
by these limitations in experimental studies. In particular, numer-
ous experimental groups have proposed schematics of conceptual
network models and provided hypothetical descriptions of how
network interactions could drive behavioral state transitions.
However, these static conceptual models are not able to replicate
time dynamics of transitions between sleep–wake states or to
determine dynamic interactions inherent to network structure.
Construction and analysis of mathematical models of these pro-
posed networks can identify the dynamic interactions of constitu-
ent populations and neurotransmitters, and provide quantitative
understanding of how network dynamics generate the temporal
architecture of sleep–wake behavior. This architecture includes
the timing, duration, and patterning of wake, NREM sleep, and
REM sleep. Model analysis can identify limitations of different pro-
posed network structures in accounting for various characteristics
of sleep–wake regulation and can generate predictions suggesting
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how experimental approaches can refine our knowledge of the
neurobiological control of sleep.

In this review, we discuss similarities and differences among
several recent physiological models of sleep–wake regulatory net-
works [7–12]. At first glance, the differences among models out-
weigh the similarities since they use different mathematical
formalisms, propose different network structures and focus on rep-
licating sleep–wake behavior in different species and under differ-
ent experimental conditions and disease states (see Table 1).
However, the models share some important similarities in under-
lying network structures and model dynamics. We describe how
the model analysis technique of fast–slow decomposition, which
exploits the naturally occurring multiple timescales of sleep–wake
behavior, can be applied to understand model dynamics in these
networks. We also discuss approaches to model validation that
can help to more tightly constrain these models and allow differen-
tiation of the capabilities and limitations of each model.

The sleep–wake network models we focus on in this review re-
flect the general hypothesis of brainstem and hypothalamic control
of sleep and wake states, in contrast to recent hypotheses of corti-
cal control [15,16]. These models consist of specific network struc-
tures among wake and sleep-promoting neuronal populations that
are motivated by recently proposed conceptual models of sleep
regulation. Although sleep–wake behavior has been simulated by
different types of models, including Markov models [17] and mod-
els that incorporate associations in dynamics among different
behavioral states without assumptions on the generating mecha-
nisms [18], we will focus on models with clear physiological
correlates.

The paper is organized as follows. In the next section, we briefly
review the anatomy and physiology of recently proposed concep-
tual networks for sleep–wake regulation. In Section 3 we review
the classic phenomenological models for sleep–wake control. In
Section 4, we describe the network structures and model formal-
isms of the recent physiological models of sleep–wake regulatory
networks with a focus on identifying similarities among them. In
Section 5, we use fast–slow decomposition to reveal the underlying
dynamics of different model network structures. Finally, in Sec-
tion 6, we discuss model validation approaches.
2. Physiology and anatomy

In the past 20 years, a focused effort to elucidate the anatomy
and physiology of sleep–wake regulation has greatly contributed
to our understanding of these processes. The identification of neu-
ronal populations, particularly in the brainstem and hypothalamus,
Table 1
Summary of recent physiological sleep–wake regulatory network models. In all models, tr
NREM sleep- and wake-promoting neuronal populations.

Model REM sleep
hypothesis

Mathematical
formalism

Modeled b

Tamakawa et al. [7,76] Reciprocal
interaction

Firing rate Rodent: b
Human: b

Diniz Behn et al. [8,77] Reciprocal
interaction

Morris–Lecar Rodent: b

Phillips and Robinson
[9,69,70,73–75,81–85]

None Firing rate Human: b
stimuli, in
Mammalia

Diniz Behn and Booth
[11,13,14,78–80]

Reciprocal
interaction

Firing rate &
neurotransmitter

Rodent: ba
architectu
Human: b

Rempe et al. [10] Mutual
inhibition

Morris–Lecar Human: b

Kumar et al. [12] Mutual
inhibition

Morris–Lecar Human: b
that are involved in sleep–wake regulation has led to the proposal
of putative sleep–wake regulatory networks (for review see [19]).
In these networks, neurotransmitter-mediated interactions among
wake-, sleep-, and REM sleep-promoting populations control tran-
sitions between sleep and wake states. Proposed wake-promoting
populations include LC, DR, and tuberomammilary nucleus (TMN),
while proposed sleep-promoting populations include ventrolateral
and medial preoptic areas (VLPO, mPOA). The evidence for mutu-
ally inhibitory projections between these wake- and sleep-promot-
ing populations has given rise to the hypothesis of a sleep–wake
‘‘flip-flop switch’’ that drives rapid transitions between distinct
states of wake and sleep [20]. By contrast, the mechanisms regulat-
ing REM sleep are less well-understood. In the 1970s, McCarley
and Hobson proposed the reciprocal interaction hypothesis in
which the excitatory cholinergic REM-promoting (REM-on) pon-
tine populations laterodorsal and pedunculopontine tegmental nu-
clei (LDT/PPT) interact with the inhibitory monoaminergic wake-
promoting population (LC) to regulate transitions between NREM
and REM sleep [21]. More recent studies have suggested that mul-
tiple GABAergic populations play important roles in the control of
REM sleep [22–27]. In particular, neuronal populations with REM-
on activity profiles have been identified in the sublaterodorsal teg-
mental nucleus (SLD), portions of the ventrolateral periaqueductal
gray matter (vlPAG), areas of the lateral hypothalamus (LH) and
the dorsal paragigantocellular nucleus (DPGi). Identified neuronal
groups with REM-suppressing (REM-off) activity profiles include
other portions of the vlPAG and the dorsal part of the deep mesen-
cephalic nucleus (dDPME). Based on these REM-associated neuro-
nal groups and their synaptic interactions, alternative theories
for the neuronal control of REM sleep have been proposed. In these
conceptual models, GABA is the primary neurotransmitter, and
mutually inhibitory synaptic interactions govern activity of these
groups and thus transitions of REM sleep [19,26,28]. However,
more evidence is necessary to reach a consensus regarding the ex-
act architecture of a GABA-based REM regulatory network.

The 24 h timing of sleep–wake behavior across species has been
well-documented, and experiments have shown that this timing is
governed by the central circadian pacemaker in the SCN of the
hypothalamus. The circadian variation of SCN electrical activity is
associated with circadian modulation of sleep–wake behavior
[29]. A distinct pattern of 24 h SCN neuronal firing, with generally
higher firing rates during the light period and generally lower fir-
ing rates during the dark period, gives rise to the diversity of noc-
turnal, diurnal, and crepuscular behaviors observed across species
[30–32]. However, there are subpopulations of SCN neurons with
other firing profiles [33–35], and these may contribute to the
ansitions between NREM sleep and wake are mediated by mutual inhibition between
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complexity of observed behaviors and the flexibility and adaptabil-
ity of circadian modulation [36].

Interestingly, the bidirectionality of projections that mediate
interactions between the SCN and sleep–wake populations has
only recently been appreciated. Both indirect and direct feedfor-
ward projections extend from the SCN to the sleep–wake network
[37]; indirect projections are relayed through the subparaventricu-
lar zone (SPZ) and the dorsomedial hypothalamus (DMH)
[36,38–40]. The majority of SCN neurons are GABAergic, but these
feedforward projections are also mediated by glutamate and neu-
ropeptides such as vasoactive intestinal peptide (VIP), vasopressin,
gastrin-releasing peptide (GRP), somatostatin, and neuropeptide Y
(NPY) [37,41–43] which may promote different behavioral states
associated with differential timing of peak wakefulness [44–48].
Feedback projections from sleep–wake regulatory populations to
the SCN provide a neuronal mechanism by which vigilance state
can directly modulate activity of SCN neurons, and presumably
the molecular circadian clock. In addition to the 24 h variation in
SCN firing rate, experiments have established state-dependence
in the firing of SCN neurons in which higher firing rates occur dur-
ing wake and REM sleep states compared to NREM sleep states
[49]; these changes are probably mediated through feedback pro-
jections from sleep–wake regulatory neuronal populations
[50,51]. Furthermore, state-dependent behaviors such as seeking
out a dark place for sleep and closing the eyes during sleep affect
light input to the SCN and thus may provide a vigilance
state-dependent modulation of SCN activity through the SCN’s
light sensitivity which is mediated by the melanopsin-sensitive
light sensors in the eye (reviewed in [52]).

In addition to the circadian modulation of sleep–wake behavior,
the timing and duration of sleep depend on the distribution of vig-
ilance states in the preceding period, i.e., the propensity for sleep
or wake increases with time spent in the other state. Borbély for-
malized this concept with the homeostatic sleep drive, ‘‘Process
S,’’ in the two-process model of sleep regulation [1,53]. Although
there are probably many physiological mechanisms that contribute
to this homeostatic modulation, the neuromodulator adenosine
has been identified as one key component (reviewed in [54,55]).
Extracellular adenosine concentrations in the basal forebrain and
cortex increase with time in wakefulness [56], and microinjection
experiments have established a somnogenic action of adenosine
[57,58]. Adenosine may act on several neuronal populations in-
volved in the sleep–wake regulatory network including LDT/PPT
[59], basal forebrain [60–62], orexin neurons [63], and VLPO
[64,65] [66]. The action of adenosine on the VLPO has been the
key mechanism in model implementations of the homestatic sleep
drive in sleep–wake regulatory networks, though some models
have considered other sites of action as well [8].

Other neuronal populations have also been implicated in sleep–
wake regulation, though they may not participate in an underlying
core network. For example, orexin neurons in the lateral hypothal-
amus play a role in stabilizing and consolidating sleep–wake
behavior, and dysregulation of the orexin system is associated with
the sleep disorder narcolepsy (for review see [67]). Some models
have included orexin neurons in their network structure and sim-
ulated sleep–wake behavior under different conditions of orexin
activity [7–10,12]. Although these approaches may provide
insights into the mechanisms associated with narcolepsy, it is
important to note that many features of sleep–wake behavior are
preserved despite orexin dysregulation.
3. Classic phenomenological models

Early mathematical models of sleep were primarily phenome-
nological and focused on the nature of the interaction between
the sleep and circadian systems. In the two-process model, the
timing of human sleep–wake behavior is described by the interac-
tion of circadian (Process C) and homeostatic (Process S) drives,
and many features of human sleep–wake behavior have been
explained in terms of these interactions [1,68]. Since their original
phenomenological postulation, Process C and Process S have been
linked to physiological correlates: the molecular and neuronal
rhythms in the SCN mediate Process C while the sleep-dependent
changes in EEG slow wave activity (SWA; power density in the
0.75–4 Hz band) and extracellular adenosine concentrations are
associated with Process S. However, the physiological basis for
the interaction of these mechanisms is less clear, though it is likely
that this interaction is mediated through the neuronal network
governing sleep regulation. The authors of several recent physio-
logically-based mathematical models have related the dynamics
of their models to the two-process model [10,69,70], and we will
address this relationship more formally in Section 5.

The Kronauer circadian model, based on a van der Pol oscillator,
has also been highly influential in the sleep field [3]. It focused on
the functioning of the circadian clock and the implications of this
clock function for sleep–wake behavior, and, in particular, it has
been applied to questions of optimal scheduling of sleep–wake
behavior under many conditions. The van der Pol formalism has
been capable of describing several key features of the self-sustain-
ing oscillation of the circadian pacemaker including the ability of
the oscillations to be synchronized by external zeitgebers, and
the frequency dependence of transitions from constant phase
relationships to periodically varying phase relationships. When
coupled with another oscillator representing the rest-activity
cycle, the interacting oscillators capture both entrained and free-
running human sleep–wake behavioral data with appropriate
phase relations between core body temperature, a marker of the
circadian rhythm, and the timing and duration of sleep [3].
Although there are now models that capture the workings of the
intracellular molecular circadian clock [71,72] and the activity of
SCN neurons [33], the ability of the Kronauer model (and its
variations) to capture these features has led to the use of this mod-
el to represent SCN inputs to physiologically-based sleep–wake
network models [13,73–75]. In these models, behavioral and neu-
ronal feedbacks to the SCN have been incorporated as light and
non-photic inputs to the Kronauer model.
4. Physiological models of sleep–wake regulatory networks

The reciprocal interaction model proposed by McCarley and
Hobson may be considered one of the first physiologically-based
models of (REM) sleep regulation [5]. Using Lotka–Volterra-type
equations, this model focused on understanding the basis of the
ultradian cycling between REM and NREM sleep states based on
the interactions between cholinergic neurons in the pontine gigan-
tocellular tegmental field and noradrenergic cells in the LC. This
model, and the subsequent limit cycle-based refinement [6], intro-
duced a mathematical approach to bridging the conceptual gap
between neuronal activity and behavior that is the primary goal
of the recent generation of physiological models of sleep–wake
regulation. Although the formalisms of the Hobson–McCarley
model have been superseded by formalisms arising out of the field
of computational neuroscience, the dynamics of this model are
preserved in the reciprocal interaction structure present in several
recent models as part of their REM sleep regulatory circuitry
[7,8,11,14,76–80].

Table 1 summarizes the recent physiological models of sleep–
wake regulatory networks considered in this review (distinct mod-
els were first introduced in the following references [7–12]). To
facilitate comparison, we broadly classify them in terms of
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network structure, specifically the conceptual model motivating
the REM sleep generating mechanisms in the model, and the math-
ematical formalism used to represent neuronal population activity.
In this section, we describe these classifications, indicate model
similarities justifying the classification, and note specific model
differences. Modeled behaviors are discussed in Section 6.1.

4.1. Network structures

Comparing network structures among the recent models can be
difficult because they include different sleep- and wake-promoting
neuronal populations, and the included external inputs, such as the
circadian drive, target different populations. However, if we con-
sider the primary neuronal populations promoting the states of
wake, NREM sleep and REM sleep included in each model and
the effects of direct or indirect projections between them, we can
identify basic similarities and differences in network structures.
Similarities include the mechanism for transitions between wake
and sleep states. Differences stem from the REM-sleep generating
mechanisms included in the models. Some models do not sepa-
rately consider REM sleep; those that do consider REM sleep are
based on network structures that reflect either the reciprocal inter-
action or mutual inhibition hypotheses for REM sleep generation.

All models incorporate mutually inhibitory synaptic interac-
tions between wake-promoting and NREM sleep-promoting popu-
lations as proposed in the conceptual model of the sleep–wake
flip-flop switch (reviewed in [20], Fig. 2). Wake-promoting popula-
tions in the models include the LC, DR, TMN, while the VLPO is the
primary NREM sleep-promoting population included in most mod-
els. Sleep–wake transitions are promoted by a homeostatic sleep
drive based on the somnogenic action of adenosine. Its primary ef-
fect is on the activity of the NREM sleep-promoting population
such that increasing values promote activation and the transition
from wake to sleep (see Section 4.3). The Phillips and Robinson
model consists primarily of this sleep–wake flip-flop switch with
other external inputs, but it does not include REM sleep generating
mechanisms (Fig. 2A). In the other models, the sleep–wake switch
is coupled to other populations involved in REM regulation.

The Tamakawa et al., Diniz Behn et al. and Diniz Behn and Booth
models all incorporate the reciprocal interaction hypothesis for
REM sleep generation in their network structures [7,8,11]. A basic
network structure extracted from these models includes the sleep–
wake switch with homeostatic sleep drive coupled to a REM sleep-
promoting population (Fig. 2B). In all models, the reciprocal
interaction hypothesis is reflected in a direct inhibitory projection
from the wake population to the REM sleep population and a net
excitatory feedback projection from the REM sleep to the wake
population. The Tamakawa et al. and Diniz Behn and Booth models
additionally include a population that is active during both wake
REM

Wake

B

Wake NREM

HOM
A

Fig. 2. Schematics of basic network structures shared among the physiologically-based m
wake, NREM sleep and REM sleep interact through excitatory (arrows) or inhibitory (fille
models; dashed lines indicate indirect projections or projections unique to individua
modulating state transitions [9]. B,C: basic network structure shared among models base
on the mutual inhibition hypothesis for REM sleep generation (C) [10,12].
and REM sleep [7,11], which in the Tamakawa et al. model medi-
ates the excitatory feedback projection from the REM sleep to wake
population. All models include direct inhibitory projections from
the NREM sleep-promoting to the REM sleep population, which is
augmented in the Diniz Behn et al. model with a net excitatory
projection from an extended VLPO population [8]. The Tamakawa
et al. model includes multiple neuronal populations with the same
state-promoting properties, but the authors group them into the
four primary clusters of populations promoting wake, NREM sleep,
REM sleep and wake–REM sleep [7].

The Rempe et al. and Kumar et al. models are based on mutual
inhibition hypotheses for REM sleep generation [10,12]. In a basic
network structure for these models, the sleep–wake switch with
homeostatic sleep drive is coupled to REM-on and REM-off popula-
tions with mutual inhibitory projections between them (Fig. 2C).
The models differ in the proposed coupling projections. Both
models include an inhibitory projection from the wake-promoting
population to the REM-on population, while the Kumar et al. model
also includes a direct excitatory projection from the wake-promot-
ing population to the REM-off population. Additionally, both mod-
els include indirect projections from the NREM-sleep promoting
population to the REM-off population: in the Rempe et al. model,
the indirect path targets the extended VLPO before reaching the
REM-off population while in the Kumar et al. model, an orexinergic
population mediates the projection. The Rempe et al. model does
not include any feedback projections from the REM regulating pop-
ulations to the sleep–wake switch. In the Kumar et al. model, an
indirect feedback projection from the REM-off population to the
wake population is mediated by the orexingeric population.

4.2. Model formalisms

In all models, the output variables of interest are the average fir-
ing rates of the state-promoting neuronal populations, as shown in
Fig. 1. Behavioral state is then interpreted according to the state-
promoting populations that are firing at rates exceeding defined
thresholds. The models differ by the type of formalism used to de-
scribe population firing rate: one type is based on standard firing
rate models for neuronal population activity and the other type
modifies equations for the excitable behavior of a single neuron
to represent population activity.

Firing rate models typically follow the form developed by Wil-
son–Cowan [86] in which the average firing rate of population X, fX

(in Hz), depends nonlinearly on the firing rates of presynaptic pop-
ulations, fY (in Hz), and other external inputs to the population, Ij:

sX
dfX þ fX ¼ SX

X
gYX f Y þ

X
Ij

 !
; ð1Þ
REM-offREM-on

Wake NREM

HOM
C

NREM

HOM

odels of sleep–wake regulatory networks. Neuronal populations promoting states of
d circles) synaptic projections. Solid lines represent direct projections shared among
l models. A: sleep–wake switch network with a homeostatic sleep drive (HOM)
d on the reciprocal interaction hypothesis for REM sleep generation (B) [7,8,11] and
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where X and Y can be W = wake, S = NREM, R = REM-on and
NR = REM-off. Parameters gYX weight the effect of presynaptic firing
rate fY on population X with the sign (positive or negative) indicat-
ing whether synaptic input is excitatory or inhibitory. The firing
rate response function SX is monotonically increasing and usually
sigmoidal in shape (Fig. 3A), although other variations have been
proposed [87,88]. The time constant sX dictates firing rate changes
on the population level.

An alternative formulation for the firing rate equation, based on
neural mass theory (reviewed in [87]), is employed by the Phillips
and Robinson and Tamakawa et al. models. In this form, average
firing rate of population X, fX (in Hz), depends nonlinearly on the
mean soma voltage of neurons in the population, VX, whose level
changes depending on firing rates of presynaptic populations, fY

(in Hz), and external inputs, Ij:

sX
dVX

dt
þ VX ¼

X
Y

gYX f Y þ
X

j

Ij; f X ¼ SXðVXÞ: ð2Þ

Both of these firing rate formalisms can be derived from equa-
tions for the membrane voltage of individual neurons synaptically
coupled in the population [88], and steady state or equilibrium
solutions for the two forms are equivalent. The difference lies in
the assumed dominant time scale of firing rate response: either
the synaptic time constant in Eq. (1) or the membrane voltage time
constant in Eq. (2) (see [88] for a full discussion).

The Diniz Behn and Booth model implements a modification of
the standard firing rate formalism in order to additionally account
for the concentration of neurotransmitters that mediate interac-
tions between neuronal populations and are presumed to play a
critical role in sleep–wake regulation [89]. In this modification,
average firing rate of population X, fX (in Hz), depends nonlinearly
on the extracellular levels of neurotransmitters expressed by pre-
synaptic populations, cY, as well as external inputs, Ij:
V

SX

A

C D

X VX

W
X

Fig. 3. A: sigmoidal-shaped firing rate response function, SX, usually used in firing rate m
firing rate and neurotransmitter model formalism. C–E: nullcline curves for the Morris–L
these nullclines. Depending on the level of inputs to a population, the cubic-shaped VX n
defining a stable fixed point (C), on the middle branch of the VX cubic defining an unstable
sX
dfX

dt
þ fX ¼ SX

X
Y

gYX cY þ
X

j

Ij

 !
;

rY
dcY

dt
þ cY ¼ TYðfY Þ; TY ðf Þ ¼ tanh

f
cY
: ð3Þ

Neurotransmitter expression depends on population firing rate
through the monotonically increasing function TY, which saturates
at 1, a normalized value for maximum expression levels (Fig. 3B).
The parameter rY dictates the time scale of neurotransmitter
release on the population level and cY governs the sensitivity of re-
lease to increases in firing rate. This formalism does not differenti-
ate synaptic and extrasynaptic neurotransmitter concentrations
[90]. Rather, in the spirit of a mean field approximation, it repre-
sents an approximate spatial and temporal average over these
two types of neurotransmission: strictly phasic synaptic neuro-
transmission in which neurotransmitter concentrations are tightly
regulated in the synaptic cleft, and combined phasic and tonic neu-
rotransmission in which neurotransmitter concentrations may
spill over and diffuse from the synaptic cleft to activate extrasy-
naptic receptors. Experimental evidence suggests that the primary
neurotransmitters of sleep–wake regulation, noradrenaline, sero-
tonin, GABA and acetylcholine, may all participate in synaptic
and extrasynaptic signaling [91–93]. To permit model analysis, a
reduced formalism where neurotransmitter release response is
instantaneous such that cY(t) = TY(fY(t)) has also been considered
[79,80]. Modeling time-varying neurotransmitter levels allows for
the inclusion of different time scales for firing rate and synaptic
dynamics, such as modeling the slow decay or adaptation of synap-
tic currents. These different time scales can be pertinent in repli-
cating the highly variable and faster transition dynamics that are
observed in rodent sleep.

The second type of model formalism, implemented in the Diniz
Behn et al., Rempe et al. and Kumar et al. models, uses a simplified
TY

B

E

VX

odel formalisms. B: saturating neurotransmitter expression function, TY, used in our
ecar model in the VX �WX phase plane. A fixed point p occurs at the intersection of
ullcline and the sigmoidal WX nullcline intersect on the left branch of the VX cubic
fixed point (D) or on the right branch of the VX cubic defining a stable fixed point (E).
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model for the excitable behavior of a single neuron, namely the
Morris–Lecar model [94,95], to represent population activity. Spe-
cifically, with appropriate scaling of time constants and variable
values, the model variable for membrane voltage, V, is interpreted
as the average firing rate of a neuronal population, VX (in Hz) which
depends on intrinsic population dynamics, Iion(VX, WX), the firing
rates of presynaptic populations, VY (in Hz), and external inputs, Ij:

C
dVX

dt
¼ IionðVX ;WXÞ þ

X
Y

gYXVY þ
X

j

Ij;

IionðVX ;WXÞ ¼ �gCa m3
1ðVXÞðVX � ECaÞ

� gK WX ðVX � EKÞ � gLðVX � ELÞ;
dWX

dt
¼ /
ðw1ðVXÞ �WXÞ

sXðVXÞ
:

ð4Þ

The variable WX, which controls gating of a potassium-mediated
membrane current, is interpreted as a recovery variable. The stea-
dy state gating functions m1 and w1 are sigmoidal. Synaptic in-
puts from other populations and external inputs appear as
additive terms modulating firing rate response. In using this model
formalism, the focus is not on model properties that generate ac-
tion potential firing as a result of the voltage-dependent mem-
brane ionic currents. Instead, focus is put on the ability of the
model to maintain stable steady VX values or stable oscillating VX

solutions. These solutions are most readily visualized in the
VX �WX phase plane by the arrangement of the equation nullclines
(Fig. 3C–E) [88,95]. The VX nullcline (dVX/dt = 0) has the typical cu-
bic shape of neuronal membrane models and the WX nullcline
(dWX/dt = 0) is sigmoidal. Intersection points of the nullclines de-
fine fixed point or equilibrium solutions. Depending on the net ef-
fect of synaptic and other external inputs to the population, a fixed
point can exist on the left branch of the cubic VX nullcline defining
a stable state with low firing rate (Fig. 3C) or it can exist on the
right branch of the VX cubic defining a stable high firing rate state
(Fig. 3E). For moderate values of synaptic or external inputs, null-
clines intersect on the middle branch of the VX cubic defining an
unstable fixed point (Fig. 3D). In this case, the model exhibits sta-
ble periodic solutions which represent intrinsic periodic activation
of the population.

The firing rate and Morris–Lecar model formalisms are similar
in that they support stable solutions in which a population exhibits
either a high activity level or a low activity level, and transitions
between these states are fast. The most significant difference
between the two types of model formalisms is the ability of the
Morris–Lecar model to display stable, oscillatory solutions, that
represent self-sustaining oscillatory behavior of a single popula-
tion. None of the firing rate model formalisms possess this
ability, so oscillatory behavior in firing rate model networks
requires the interaction of multiple populations and/or an external
input.

4.3. Homeostatic sleep drive and other network inputs

In the sleep–wake switch component of all models, composed
of the mutually inhibitory interactions between the wake- and
NREM sleep-promoting populations, transitions in population
activity are governed by a homeostatic sleep drive, H(t). This repre-
sents a slow accumulated feedback of previous state history on the
sleep–wake regulatory system and promotes sleep as a function of
prior wakefulness. The model variable H increases during the wake
state and decreases during the sleep state with an exponential time
course, similar to the two-process model:

dH
dt
¼

Hmax�H
sW

in wake
Hmin�H

sS
in sleep

( )
: ð5Þ
While H is always restricted to be positive, some models include
saturating limits, Hmax and Hmin, and different time constants, sW

and sS, for the increase and decrease, respectively, of H. The simu-
lated action of H in all models is on the NREM-sleep promoting
population as suggested by the effects of adenosine on the VLPO
[64], although the Rempe et al. model additionally includes an ac-
tion of H on the wake-promoting population [10]. In accordance
with the effects of adenosine, H acts on the NREM population such
that high levels of H promote its activation, and low H levels permit
inactivation. This action of H is modeled as an additive input to the
NREM population [7,9,10,12], as an effect on its firing rate response
function [11], and by modulating the synaptic inhibition from the
wake to the NREM population [8]).

Circadian modulation of sleep–wake behavior is simulated in
the models by the inclusion of an external circadian drive repre-
senting the signal of the circadian clock propagated throughout
the brain by the SCN. The circadian drive has been modeled as a
simple 24 h sinusoidal function [9,69,78], as the skewed sinusoidal
function derived by the two-process model [10,12] and by circa-
dian oscillator models that take into account the response of the
molecular clock to photic and nonphotic inputs [73–75]. The site
of action of the circadian drive varies among models reflecting
incomplete experimental characterization of the anatomy of the
direct and indirect projections between sleep–wake centers and
the SCN. Models simulate the circadian drive as targeting only
the NREM population [9], distributing effects among multiple
sleep- and wake-promoting populations [7,10,78] and acting
through orexinergic populations [12]. Physiologically, the molecu-
lar circadian clock induces higher neural activity in the SCN during
daylight hours and lower activity levels during the night [49].
Assuming that SCN neural activity propagates its circadian signal,
models replicating human behavior simulate the action of the cir-
cadian drive as inhibiting sleep and/or promoting wakefulness
[9,10,12], while models replicating rodent behavior simulate oppo-
site effects [7,78].

Similar formalisms can be used to track other physiologically
relevant extracellular variables. For example, as described previ-
ously, several of the sleep–wake network models include external
inputs from orexinergic neurons [8–10,12] that target the wake-
promoting populations and support the waking state.

4.4. Modeling variability in sleep–wake behavior

Sleep–wake architecture is characterized by bouts, or episodes,
that are scored as a contiguous state (wake, NREM sleep, or REM
sleep). Typically, bouts in experimental data are scored in 10 or
30 s epochs, and this convention has been adopted by mathemati-
cal modelers who ‘‘score’’ simulated sleep–wake behavior in order
to compare it with experimental data. The minimum bout length is
defined by the scoring epoch, and the maximal bout length is
determined by the maximal time period of activation of the
wake-, NREM sleep-, or REM sleep-promoting populations.

A defining characteristic of rodent sleep–wake behavior is its
variability. During the active period, rodents routinely fall into
NREM sleep with REM sleep occurring only occasionally. During
the rest period, brief wake bouts fragment NREM sleep episodes
and REM bouts occur with very little regularity. In humans, while
normal sleep–wake behavior displays stereotypical patterning
based on average statistics, individual sleep recordings are highly
variable with brief wake episodes interrupting NREM sleep and
REM–NREM cycle periods showing standard deviations on the or-
der of tens of minutes above the mean 90 min cycle period [96].
As discussed below in Section 6.2, higher order statistical analysis
of sleep–wake recordings has suggested that variability in the
durations of wake bouts and sleep bouts may, in fact, have a
structure that is conserved across rodent and human sleep. For
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modeling sleep–wake regulation, then, the addition of noise to a
model network may provide additional opportunities for model fit-
ting beyond the basic requirement that the noise does not disrupt
the ability to robustly exhibit stereotypical sleep–wake patterning.

In most of the sleep–wake network models, robustness of mod-
el dynamics to noise has been investigated by adding stochastic
terms to firing rate equations [7–10]. Such additive noise provides
variability in state transition dynamics, but investigators did not
test whether the higher statistical structure was replicated. In an
effort to replicate the variability observed in rodent sleep–wake
recordings, the Diniz Behn and Booth models include three key
physiological sources of noise [11,14]:

(1) Variability in neurotransmitter release that is correlated
with, but not determined by, the firing rate of the presynap-
tic population;

(2) Variability in the level of the homeostatic sleep drive;
(3) Random excitatory inputs from presynaptic populations that

are external to the network represented in the model.

Variability in neurotransmitter release and in the homeostatic
sleep drive are motivated by the stochastic nature of synaptic
transmission and receptor binding, while random excitatory inputs
simulate activity on excitatory afferents from other brain regions
targeting sleep–wake regulatory populations. To incorporate vari-
ability of neurotransmitter release into the model, each steady
state neurotransmitter release function TY in Eq. (3) was multiplied
by a noise factor whose amplitude randomly varied (with normal
distribution and unit mean) at time points determined by a Poisson
process (see [11] for additional details). Variability in the level of
the homeostatic sleep drive was modeled by replacing the maxi-
mum (Hmax) and minimum (Hmin) limits for the homeostatic sleep
drive, H in Eq. (5), with normally distributed random numbers that
changed values at Poisson process-determined time points. Finally,
to incorporate random external inputs to a postsynaptic popula-
tion X, excitatory pulses of random amplitude arriving according
to a Poisson process were added to the argument of the steady
state firing rate response functions, SX. As discussed in more detail
in Section 6.2, each of these sources of variability contributed to
replicating the higher order statistics of rodent sleep–wake behav-
ior [14].

5. Model dynamics and analysis

All of the sleep–wake network models exhibit biologically
appropriate state transition behavior including the universally ob-
served state transition sequence of wake to NREM sleep to REM
sleep. The models simulating human sleep replicate consolidated
periods of wakefulness with regular NREM–REM cycling during
sleep [7,10,12], while models for rodent sleep capture their poly-
phasic sleep patterning [7,8,11]. Each modeling study describes
how network structure and model formalism generate these state
transitions. The similarities in network structure and dynamics in
the model formalisms identified above support our proposal that
the models share common underlying dynamics. As discussed in
this section, we claim that transition dynamics of the sleep–wake
switch can be equivalent in all model formalisms. We propose that
the analysis technique of fast–slow decomposition provides a use-
ful framework for analyzing model dynamics of these networks,
and we apply this technique to our reciprocal interaction-based
network model to understand transition dynamics.

5.1. The sleep–wake switch is a hysteresis loop

In the majority of models, despite differences in model formal-
isms, transitions between wake and sleep states generated by the
mutually inhibitory sleep–wake switch network occur through a
hysteresis loop [7–11]. The sleep homeostat H drives model trajec-
tories between states where either the wake or NREM sleep popu-
lation is active. The mutual inhibition between populations causes
the difference in H levels at which sleep–wake and wake–sleep
transitions occur, thereby defining the loop. These hysteresis loop
dynamics are equivalent to the behavior of the two-process model,
as has been shown for the Phillips and Robinson model [69,70] and
the Rempe et al. model [10]. As discussed by Phillips and Robinson
[69], the equivalent dynamics provide a physiological basis for the
phenomenological two-process model.

Mathematically, the hysteresis loop dynamics of the sleep–
wake switch can be formally revealed through fast–slow decompo-
sition [79,97]. This technique exploits the different time scales in a
model system to reduce the model into a fast subsystem driven by
a slowly varying subsystem. For the sleep–wake switch, the slow
time scale of the homeostatic sleep drive, relative to the faster
transitions in population activity, provides a natural time scale
separation. To illustrate this, we consider the sleep–wake switch
network (Fig. 2A) modeled in the reduced form of our firing rate
and neurotransmitter formalism (Eq. (3)) under modulation of a
homeostatic sleep drive H:

sW
dfW

dt
þ fW ¼ SWðgSW cSÞ; cW ¼ TWðfWÞ;

SWðcÞ ¼
Wmax

2
1þ tanh

c � bW

aW

� �� �
;

sS
dfS

dt
þ fS ¼ SSðgWScW ;HÞ; cS ¼ TSðfSÞ;

SSðc;HÞ ¼
Smax

2
1þ tanh

c � bSðHÞ
aS

� �� �
;

ð6Þ

where time is in seconds. The sleep homeostat H is governed by Eq.
(5) with sW = 600 s, sW = 700 s, Hmax = 1.4 and Hmin = �1.6. H affects
activation of the NREM population by modulating its half-activation
level as bS(H)=�1.5H. The steady state neurotransmitter expression
functions TW and TS are as in Eq. (3) with cW = 5 Hz and cS = 4 Hz.
Waking behavior is defined by fW > hW = 1.5 Hz. The remaining
parameters are: gSW = �2, gWS = �2, Wmax = 6.5 Hz, bW = �0.3,
aW = 0.5, Smax = 5 Hz and aS = 0.25. Numerical solutions of this net-
work display regular alternations of high fW activity corresponding
to the waking state and high fS activity corresponding to the sleep
state (Fig. 4A) with fast transitions between states.

Fast–slow decomposition takes advantage of the much slower
time scales for H activity (600 and 700 s) relative to fW and fS activ-
ity (5 and 1 s) to decompose this model into a fast subsystem con-
sisting of the equations for fW and fS (Eq. (6)) and a slow subsystem
consisting of the equation for H (Eq. (5)). As we have shown previ-
ously, this decomposition can be done formally by scaling the time
constants for H by a small parameter e, and taking the limit as e ap-
proaches zero [79,80]. Model dynamics are then analyzed in terms
of the fast subsystem with the slow variable H considered as a
parameter, with values in the interval [Hmin, Hmax]. Computing
the bifurcation diagram of the fast subsystem, with respect to H
as the bifurcation parameter, reveals a Z-shaped curve of fixed
point solutions for fW (Fig. 4B). For low and high values of H, single
stable fixed points exist: high fW values correspond to the wake
state, and low fW values correspond to the sleep state. For an inter-
val of H values, the high and low stable branches of the bifurcation
curve overlap, separated by a branch of unstable fixed points, cre-
ating a region of bistability. Saddle-node bifurcations form the
endpoints of this region and define the transition points between
wake and sleep. By choosing hW, the fW threshold defining the wake
state and the direction of H evolution, between the stable upper
and lower branches of the Z-shaped bifurcation curve, the slow H
dynamics drive the trajectory of the full model system around this
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region of bistability to produce stable, periodic oscillations consist-
ing of alternating periods of high fW and high fS activity.

Inputs to either population affect the H values of the saddle-
node bifurcations, or knees of the Z-shaped bifurcation curve, to
change the timing of state transitions. For example, an oscillating
circadian drive targeting the sleep population can rhythmically
shift the H values of the knees, which acts similarly to the circadian
modulation of the lower and upper thresholds for state transitions
in the two-process model.

In an analysis of the existence of hysteresis loop cycling in an
equivalent network [80], we identified two general mechanisms
by which hysteresis-loop cycling is lost: the trajectory may ap-
proach a stable fixed point of the full model or the H dynamics
may trap the trajectory near the threshold value fW = hW. In terms
of the fast subsystem bifurcation diagram (Fig. 4B), these mecha-
nisms can be understood as follows:

(1) If a stable branch of the Z-shaped bifurcation curve inter-
sects the line H = Hmin below the threshold fW = hW or inter-
sects the line H = Hmax above the threshold fW = hW, the
intersection point will be a stable fixed point of the full
model. Regardless of initial conditions, the model trajectory
will eventually approach the steady state values associated
with this stable fixed point;

(2) If a stable branch of the Z-shaped bifurcation curve inter-
sects the threshold, fW = hW, the system will enter into a
low-amplitude oscillation about this point.

Inputs to the wake and sleep-promoting populations, either
external or synaptic from other populations included in the net-
work, can distort the bifurcation curve of the fast subsystem so
that either of these mechanisms destroys hysteresis loop cycling.
A condition for the existence of hysteresis loop cycling sug-
gested by 1), namely the absence of a stable fixed point of the full
model, can be graphically defined in the phase plane of the 2-D fast
subsystem (Fig. 4C). To illustrate this, we consider the nullcline
surfaces of the full model (setting time derivatives to 0 in Eqs.
(5) and (6)). The H nullsurface consists of two pieces: H = Hmax if
fW P hW and H = Hmin if fW < hW. This defines a discontinuity in
the fS nullsurface at fW = hW. Since there is no explicit H dependence
in the fW equation, the fW nullsurface is continuous. In the (fW, fS)
phase plane, an intersection point of the piecewise fS nullcline with
the fW nullcline corresponds to a fixed point of the full model. How-
ever, due to the discontinuity of the fS nullcline, it may not inter-
sect the fW nullcline, as shown in Fig. 4C, thus allowing for the
existence of hysteresis-loop cycling.

As discussed in more detail in Section 5.3, the higher complex-
ity of the Morris–Lecar model formalism introduces additional
dynamics to model solutions so that the sleep–wake flip-flop
switch may not exhibit equivalent hysteresis loop dynamics. How-
ever, in the Rempe et al. and the Diniz Behn et al. models, param-
eters are set so that sleep–wake switch dynamics are similar to
those generated by a hysteresis loop [8,10]. We can see this simi-
larity by considering model solutions in the phase planes of each
population, as described in [8,10]. In particular, activation of either
the wake or NREM population corresponds to the existence of a
stable fixed point on the right branch of the VW or VS cubic null-
clines, respectively (as in Fig. 3E). The homeostatic sleep drive acts
to shift these cubic nullclines such that state transitions occur
when the stable fixed point disappears in a saddle-node bifurca-
tion. These saddle-node bifurcations are thus defined for specific
values of the sleep homeostat H, similar to the saddle-node bifur-
cations in the fast subsystem bifurcation diagrams underlying hys-
teresis loop dynamics in the firing rate formalism models. Below
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we discuss how the Kumar et al. model takes advantage of the
additional dynamics of the Morris–Lecar model to induce transi-
tions in the sleep–wake switch in a different manner.

5.2. Dynamics of REM–NREM reciprocal interaction hypothesis
networks

We can intuitively understand the dynamics of network models
based on the reciprocal interaction hypothesis for REM sleep gen-
eration (Fig. 2B) by recognizing that transitions between sleep and
wake states generated by the sleep–wake switch occur through
hysteresis loop dynamics as described above. Since the classic reci-
procal interaction model generates REM–NREM cycling through
limit cycle dynamics, we can further expect that during the sleep
state, the REM population can repetitively activate as a result of
limit cycle dynamics arising through its coupling to the wake-pro-
moting population. Thus, we may expect the dynamics of the
sleep–wake network models with reciprocal interaction mecha-
nisms to be governed by a coupled hysteresis loop and limit cycle.
To formally reveal and understand these dynamics, we applied
fast–slow decomposition to the Diniz Behn and Booth reciprocal
interaction-based network modeled in the reduced form of the fir-
ing rate and neurotransmitter formalism (Eq. (3)) [79]. This model
consists of firing rate equations for the 3 state-promoting popula-
tions under the modulation of the homeostatic sleep drive H (Eq.
(5)) that affects the activation of the NREM population as in Eq. (6):

sW
dfW

dt
þ fW ¼ SWðgSW cS þ gRW cRÞ; cW ¼ TWðfW Þ;

sS
dfS

dt
þ fS ¼ SSðgWScW ;HÞ; cS ¼ TSðfSÞ;

sR
dfR

dt
þ fR ¼ SRðgWRcW þ gSRcSÞ; cR ¼ TRðfRÞ;

ð7Þ

where steady state firing rate response functions, SX, and neuro-
transmitter expression functions, TX, are defined as in Eqs. (6) and
(3), respectively (see [79] for full equations and parameter values).
Applying fast–slow decomposition motivated by the slow dynamics
of the homeostatic sleep drive defines a three-dimensional fast sub-
system (Eqs. (7)) in which H is a parameter. The bifurcation dia-
grams of the fast subsystem in terms of the bifurcation parameter
H are necessarily more complex than in the sleep–wake switch,
but an underlying hysteresis loop is still apparent (Fig. 5A and B).
For certain parameter values, the fW bifurcation curve has a general
Z-shape, with a branch of stable fixed point solutions that exists for
low values of H as in the sleep–wake switch (Fig. 5A). However, the
branch of stable solutions that exists for high H values instead con-
sists of stable periodic solutions. Thus, the hysteresis loop is defined
by a region of bistability between a branch of stable fixed point
solutions representing the wake state, and a branch of stable peri-
odic solutions governing REM–NREM transitions during sleep. In
the fW bifurcation plot, these periodic solutions are of low ampli-
tude and represent small increases in wake population activity as
a result of REM population activation. The fR bifurcation plot reveals
high amplitude, stable periodic solutions in fR that exist for high H
values (Fig. 5B). The region of bistability is less apparent in the fR

bifurcation plot since the branch of stable fixed point solutions at
low fR values, corresponding to the wake state, is at the same fR val-
ues as the minimum of the stable periodic solutions (superimposed
in the figure). In the full model, then, the slow dynamics of H drive
the hysteresis loop dynamics between a state with high fW and low
fS and fR activity, representing the wake state, and a state with high
fS activity and alternating high fR activity with small fW fluctuations,
representing NREM–REM cycling during the sleep state (Fig. 5C).

Model analysis identified that REM sleep dynamics were depen-
dent on the coupling between the sleep–wake switch and the REM
population [79]. To explore this dependency we modified the half-
activation of the steady state firing rate response function for the
REM population, SR. For high values of this parameter, bR, the
REM population did not activate during the sleep state and model
dynamics were completely described by the sleep–wake hysteresis
loop. At lower values of this parameter, the REM population acti-
vated only prior to the transition from sleep to wake, generating
the stereotypical sleep pattern of wake–NREM–REM–wake ob-
served in rodents. For even lower bR values, the periodic solutions
representing NREM–REM cycling appeared in the fast subsystem
bifurcation plot, and the fraction of the bistability region over
which these periodic solutions existed increased as bR was further
decreased. The bifurcation plots in Fig. 5A and B illustrate the case
for the lower values in this range. Thus, by varying a single param-
eter, REM dynamics could be altered to generate sleep patterns
reflective of different species and different circadian phases.
5.3. Dynamics of REM–NREM mutual inhibition hypothesis networks

Both of the model networks based on the mutual inhibition
hypothesis for REM sleep generation, the Rempe et al. and Kumar
et al. models, employ the Morris–Lecar model formalism whose
additional complexity allows different network dynamics. For
example, while both models contain a sleep–wake switch under
homeostatic modulation to govern transitions between wake
and sleep states, the transition dynamics may not necessarily be
equivalent to a hysteresis loop. As described above, parameter
values are set in the Rempe et al. model so that sleep–wake
switch dynamics are similar to a hysteresis loop in which transi-
tions are governed by the homeostatic sleep drive [10]. However,
since populations possess the potential for intrinsic oscillatory
behavior in this model formalism, the sleep–wake switch need
not rely on the sleep homeostat to drive state transitions. Specif-
ically, in the Kumar et al. model, activation of the wake popula-
tion is associated with a stable fixed point on the right branch
of the VW cubic. Thus, transitions from wake to sleep depend on
the homeostatic sleep drive activating the NREM population,
causing this fixed point to disappear at a saddle-node bifurcation.
Activation of the NREM population, however, may result in unsta-
ble fixed points on the middle branch of the VS cubic nullcline. As
a consequence, there is no stable fixed point with high VS values
that attracts the trajectory and, instead, the VS trajectory may
transiently activate, supported by the action potential generating
mechanisms of the Morris–Lecar model. In this case, the transi-
tion from sleep back to wake, and thus sleep bout durations,
are not determined by the sleep homeostat but rather by the
intrinsic properties of the NREM population. Rempe et al. exploit
this alternate mechanism for generating transitions in the sleep–
wake switch in their simulations of narcoleptic sleep behavior. In
those simulations, modulation of the influence of an orexinergic
population enabled the change in dynamics.

Despite structural similarities to the sleep–wake switch in both
mutual inhibition hypothesis models, transitions in the REM-on/
REM-off switch are not generated by a hysteresis loop. Instead,
both models exploit the intrinsic oscillatory dynamics of individual
populations to drive REM–NREM transitions during sleep. In the
Rempe et al. model, during the sleep state, the REM-off population
is in a regime where nullcline intersections correspond to unstable
fixed points and the population intrinsically oscillates. It thus pro-
vides alternating episodes of inhibition to the REM-on population
allowing it to oscillate with an anti-phase relationship. In the Ku-
mar et al. model, the REM-on population is in the intrinsically
oscillating regime during the sleep state, and its alternating inhibi-
tion to the REM-off population drives the anti-phase oscillations of
the two populations.
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6. Model validation

To bridge the gap between sleep–wake behavior and the neuro-
nal mechanisms underlying its regulation, the output of the recent
physiological network models is simulated sleep–wake behavior.
Model validation then relies on the replication of behavioral state
transitions observed in experimental sleep–wake recordings,
accounting for both qualitative and quantitative characteristics.
Qualitative features include patterns of state transitions such as
the stereotypical transition pattern of wake-to-NREM-to-REM
sleep which is observed in all normal mammalian sleep, regular
REM–NREM cycling that occurs in human sleep, and appropriate
phase relationships between the circadian and sleep–wake cycles.
Quantitative measures of sleep–wake behavior have traditionally
consisted of basic summary statistics such as time spent in each
state and the number and duration of bouts. In many cases, pertur-
bations to normal sleep–wake behavior have been used to provide
additional constraints. These perturbations may simulate natu-
rally-occurring pathologies, such as the fragmented sleep–wake
behavior that occurs in the sleep disorder narcolepsy, or they
may reflect external manipulations such as microinjection of neu-
rotransmitter agonists/antagonists or pharmacological agents. In
Section 6.1 we describe some of the diverse aspects of sleep–wake
behavior that have been used in the validations of physiologically-
based mathematical models.

Although behavioral diversity provides some clear constraints
for models, given the complexity of the physiological network
models, these measures may still fail to provide sufficient con-
straints to identify and differentiate proposed model structures
and model formalisms. For example, the different network struc-
tures of the Rempe et al. and Kumar et al. mutual inhibition-based
networks could each account for stereotypical normal human sleep
behavior and its disruption by removal of orexinergic inputs as oc-
curs in narcolepsy. The polyphasic nature of rodent sleep may pro-
vide richer state transition dynamics to constrain these complex
models. The larger number of bouts occurring in rodent sleep facil-
itates the application of higher order statistical approaches such as
survival-based analysis of wake and sleep bout durations; these
techniques have been applied to analyze human data as well
[98–100], but, to our knowledge, they have not been used to con-
strain models of human sleep. In Section 6.2, we discuss results
illustrating an approach in which features of survival analysis ap-
plied to rodent sleep were used to constrain the Diniz Behn and
Booth model.

6.1. Reproducing diverse aspects of sleep–wake behavior

Mathematical modeling of sleep–wake behavior has been moti-
vated by experimental observations in a range of species under dif-
ferent conditions. In many cases, these observations have yielded
variations of baseline sleep–wake behavior that could be used to
constrain a physiologically-based model; some of these modeled
behaviors are summarized in the last column of Table 1. In human
sleep, baseline sleep–wake behavior, with its strong circadian
modulation, often provides the initial assessment of model solu-
tions [7,76]. Further constraints on these models arise from specific
disease phenotypes, such as narcolepsy [10,11], or externally-im-
posed perturbations to baseline human sleep–wake behavior
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caused by sleep deprivation [8,82,10,11], internal desynchrony
[72,12], or caffeine administration [80].

In models of rodent sleep–wake behavior, similar perturbations
including circadian modulation [76] and orexin dysregulation
(resulting in a narcolepsy-like phenotype) [75] have been used to
constrain models. The differences in sleep–wake behavior across
species, produced by a putatively conserved network of neurons,
have also been used as constraints [6,81,101]. In addition, model-
ing rodent behavior allows us to take advantage of data from more
invasive experiments that can only be done in animal models.
Numerous experimental studies have investigated the role of spe-
cific neuronal populations and neurotransmitter interactions in the
regulation of sleep–wake states through targeted microinjection of
neurotransmitters, their agonists or antagonists in the behaving
animal [23,102,103]. For example, in the rat, Mallick et al. [23]
investigated the role of the LC in REM sleep regulation by microin-
jecting GABA and ACh agonists and antagonists into the LC and
monitoring REM sleep behavior for the subsequent 4 h. Such
experiments directly manipulate components of proposed sleep–
wake regulatory networks and assess the effects on sleep behavior,
thereby providing significant constraints on model network struc-
ture and dynamics. Simulations of such experiments were per-
formed using the Tamakawa et al. model where the action of
injected agents was simulated by adding fixed external inputs to
specific populations [7]. We refined these simulations in the firing
rate and neurotransmitter model formalism: the explicit tracking
of neurotransmitter concentrations in this formalism allows for
more realistic simulation of the effects of injected neurotransmit-
ters, their agonists or antagonists [11].

In addition to providing novel constraints for the model, the
comparison of simulated results to agonist/antagonist experiments
can provide valuable insights into the mechanisms underlying
experimental observations. As an example, in the Mallick study,
some pairs of neurotransmitter agonists/antagonists exerted oppo-
site effects on certain sleep–wake states [23], but trends were not
as clear for all pairs or all states. This type of result, though difficult
to interpret, is not unexpected given the different actions of ago-
nists and antagonists. Namely, agonists act on the network during
all sleep–wake states, so every state and state transition may be af-
fected by their presence. In contrast, antagonists exert an effect
only when the relevant neurotransmitter is present. Because the
presence of specific neurotransmitters in sleep–wake centers is
state dependent, this implies that antagonists directly affect only
a subset of states and state transitions.

In addition to targeted microinjection, recently developed
experimental techniques such as optogenetic stimulation offer
new methods to probe the role of specific neural populations and
their interactions in the control of sleep–wake behavior [104–
106]. Given the challenges of interpreting resulting changes in
sleep behavior of such experiments in terms of conceptual models
of sleep–wake regulatory networks, we propose that physiologi-
cally-based models can play an important role during the entire
experimental process. They can serve as a test bed for proposed
experiments to determine which manipulations would result in
significant and observable effects on sleep behavior. Results of sim-
ulated experiments and analysis of model dynamics can provide a
framework for interpreting experimental results. Additionally, dif-
ferent model network structures and model formalisms can be
tested to account for discrepancies between experimental and
model results.

6.2. Survival analysis of bout durations

Recently, survival analysis of state bout durations has been ap-
plied as a higher-order metric for sleep–wake behavior that can
quantitatively distinguish experimental conditions and disease
states. Early studies using survival analysis identified key qualita-
tive differences in the distributions of wake and sleep bout dura-
tions. Namely, wake bout durations displayed power-law
distributions (proportional to t�a) while sleep bout durations
exhibited exponential distributions (proportional to e�bt) [107].
Interestingly, these distribution profiles persisted across species
[108], though they exhibited alterations in the presence of differ-
ent conditions such as disease or genetic mutation [77,98–
100,109]. Although recent work has questioned whether wake
distributions are best characterized by a strict power-law distribu-
tion or a multi-exponential distribution [110], the key point of this
analysis is the identification of distinct, qualitative differences be-
tween wake and sleep bout distributions.

Replicating distributions of bout durations that necessarily
reflect highly variable state transition dynamics is a challenge for
the physiological sleep–wake network models whose dynamics
are governed by an underlying deterministic system. Using the
Diniz Behn and Booth model, we investigated whether it could
generate rodent sleep–wake behavior that matched summary
statistics of experimentally recorded behavior as well as wake
and sleep bout distributions that followed power-law-like and
exponential profiles, respectively [14]. To induce state transition
variability, the three physiological sources of variability described
in Section 4.4 were included: (1) variability in neurotransmitter re-
lease, (2) variability in the level of the homeostatic sleep drive, and
(3) external random excitatory inputs to the wake-, REM sleep- and
wake/REM sleep-promoting populations.

The model generated realistic rat sleep–wake patterning with
standard summary statistics not differing significantly from those
reported for experimental rat sleep recordings in the light period
(two-sample t-test, p < 0.05, [111]). More importantly, distribution
profiles of simulated wake and sleep (NREM and REM sleep states
combined) bout durations qualitatively exhibited the appropriate
profiles (Fig. 6). Wake bout durations between 10 and 480 s
followed a power-law distribution (Fig. 6A), while sleep bout dura-
tions followed an exponential distribution (Fig. 6B). Fitting either
distribution with alternate functions, such as an exponential func-
tion for the wake durations or a power-law function for sleep dura-
tions, resulted in larger least-squared errors and lower r2 values.

Obtaining the appropriate distribution profiles of wake and
sleep bout durations most certainly depended on the noise sources
included in the model. However, network structure also played a
significant role, especially in replicating the power-law-like profile
of wake bout durations. Model analysis showed that, in the deter-
ministic model with all noise sources removed, wake bout dura-
tions displayed a bimodal profile reflecting two network
mechanisms for wake bout generation: homeostatically governed
wake bouts with longer durations and shorter wake bouts associ-
ated with the termination of REM bouts as a result of the reciprocal
interaction mechanism for REM sleep. Variability in neurotrans-
mitter and homeostatic sleep drive levels introduced more vari-
ance to this bimodal distribution. However, in order to achieve
the power-law-like profile of wake bouts, the brief wake bouts ini-
tiated by external excitatory inputs were required to have shorter
average duration than the brief post-REM wake bouts. Thus, the
existence of three separate mechanisms with distinct time
constants to generate wake bouts along with the appropriate coor-
dination of these mechanisms were key in producing a power-law-
like profile of wake bout durations. Interestingly, these results are
more consistent with a multi-exponential distribution for wake
bout durations rather than a strict power law distribution.

An exponential distribution for sleep bout durations was less
sensitive to specifics of network structure since it can be generated
by random interruptions of the sleep state. We found that the lon-
gest duration sleep bouts (>200 s) followed approximately expo-
nential distributions for every combination of stochastic
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elements included in the model. Obtaining an initial exponential
profile for shorter sleep bouts depended on the presence of random
excitatory inputs to the wake-promoting populations that intro-
duced higher fragmentation of the NREM state.

While the use of survival analysis to characterize experimen-
tally recorded sleep–wake behavior is relatively new and has been
applied in only a limited number of studies, it provides signifi-
cantly tighter constraints on results of sleep–wake network models
than standard summary statistics. Further work is clearly needed
to make this analysis standard for sleep–wake regulation model-
ing. For example, the effect of different forms of variability in-
cluded in model networks on bout duration distributions should
be analyzed, and the ability of this analysis to distinguish different
network structures or different model formalisms needs to be
investigated. This approach also provides an excellent opportunity
to evaluate the interactions of deterministic and stochastic compo-
nents and assess their contributions to overall model dynamics.

7. Conclusions

The influence of the phenomenological two-process model, cou-
pled oscillator models and the reciprocal interaction model on our
scientific progress in understanding sleep and circadian rhythms
cannot be overstated. However, the recent advances in clarifying
the neural anatomy and physiology involved in the regulation of
sleep and circadian rhythms require more detailed and physiolog-
ically-based mathematical models. Indeed, mathematical models
have the greatest impact when modeled mechanisms can be
directly correlated with physiological mechanisms and model out-
puts with observed measurements. In the recent physiologically-
based mathematical models of sleep–wake regulatory networks,
existing experimental results are incorporated and model predic-
tions include specific, testable hypotheses. Thus, these models
have the potential to contribute much to current experimental
investigations of sleep and circadian rhythms. However, these
models are very complex, reflecting both intricate network struc-
tures and the highly nonlinear dynamics inherent in the mathe-
matical formalisms used. In this review we identified common
features among these models including network structures, model
dynamics and approaches for model validation. Our hope is that
identifying these commonalities will help to propel understanding
of both the mathematical models and their underlying conceptual
networks, and focus directions for future experimental and theo-
retical work.
In closing, we would like to comment on what we see as the
current challenges facing mathematical modeling of sleep–wake
and circadian regulation. Although the field of computational neu-
roscience is sufficiently broad and mature to provide appropriate
mathematical formalisms to model brain activity at many tempo-
ral and spatial scales, detailed simulation of sleep–wake behavior
requires the appropriate integration of formalisms into multi-scale
models. The models reviewed here reflect current formalisms for
modeling neural activity at the population level and synaptic inter-
actions among neuronal populations. However, many of these for-
malisms were developed to describe the behavior of cortical
networks. The brainstem and hypothalamic populations involved
in sleep–wake regulation and the complexity of their neuronal sig-
naling, particularly when neuropeptides are involved, may require
new formalisms. Similarly, the next generation of circadian models
requires new approaches to integrate models of the molecular
clock with models of SCN neurons and to appropriately incorporate
the effects of photic and non-photic inputs on this system. Just as
the dynamics of the two-process model can be interpreted in terms
of recent physiological sleep–wake models, future physiologically-
based circadian models may provide a context for the dynamics of
the Kronauer circadian model based on the van der Pol oscillator.

Another major challenge is model validation. Reliance on the
replication of qualitative features of behavioral state transitions,
which was sufficient for the phenomenological models, does not
provide sufficient constraints on highly complex models. The
increasing use of higher order statistical measures to characterize
experimental sleep–wake recordings, particularly in humans
[100], is an important advance which modeling studies can adopt
to improve model validation. As newer experimental techniques
for recording and stimulating neural activity are applied to under-
stand sleep and circadian rhythms in behaving animals [105], these
data can offer novel constraints for models. Furthermore, advanced
techniques that more closely incorporate experimental data and
mathematical models [112,113], such as data assimilation that is
extensively used in weather prediction modeling, offer sophisti-
cated methods for model constraint and can strengthen the role
of mathematical modeling in the scientific investigation of sleep–
wake behavior.
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