TREE BASIS IN BANACH SPACES

STEVEN F. BELLENOT

ABSTRACT. Tree basis in a Banach space is a Schauder basis spaces with
additional nice “tree projections”. It is a property strictly between con-
ditional and unconditional basis, Tree basis are classified. Stronger basis
properties like symmetric, and subsymmetric have weaker tree versions
as well.- These bases are motivated by well known adaptive approxima-
tion algorithms.

1. INTRODUCTION

There is a big different between a Banach space having a (conditional)
Schauder basis and it having the more restrictive unconditional basis. The
existence of subspaces with Schauder basis was known to Banach, while
examples of Banach spaces with no unconditional basic sequence [13] are
more recent. A tree basis is defined to be an intermediate property, strictly
stronger than Schauder and strictly weaker than unconditional. There are
many tree based spaces like JT and wavelet bases, like the Haar system,
which are tree spaces by construction and have a natural tree basis. The
spaces with a tree basis includes most of the interesting Banach spaces that
have a basis. Even James quasi-reflexive space J has a tree basis (Proposition
3.10). Most properties of a Banach space with tree basis can be obtained
from the classification as the direct sum of a space with unconditional basis
and another space with Schauder basis (Proposition 3.8). So tree basis are
stronger than Schauder basis as they imply a complemented subspace with o,
an unconditional basis.

We briefly consider shrub basis as a generalization of a tree basis and
show the existence of a non-trivial shrub basis implies the existence of a
tree basis (Proposition 3.11). Even higher dimensional “trees” thus reduce
to the usual one-dimensional binary tree.

Most of the tree based constructions have the stronger property that
each rooted subtree is isometric to the original space. We call these spaces
tree translation invariant. Such spaces have many nice properties, including
being isomorphic to their square. (So J’s tree basis is not tree transition
invariant.) Such spaces are often primary and many rearrangement invariant
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spaces are tree translation invariant. Another classical example of a tree
translation invariance is the classic Schauder basis for C.

Although these properties are amusing in their own right, the motiva-
tion was originally to abstract the adaptive approximations, like adaptive
quadrature methods, [8] pages 220 — 227, commonly used in some numerical
algorithms, which subdivide an interval only where the variation is rela-
tively large and do not subdivide the relatively flat spots. For example,
consider the next recursive algorithm for approximating a continuous func-
tion f on [0, 1] by a piecewise linear function.'It modifies a list stored in the
global variable L. After the procedure adaptive(0,1) is called, then the list
L = {zo = 0,x1,... 2z, = 1}, contains the intervals of the piecewise linear
approximation function, g, that is g is linear on each [zi—1, ;] and for.each
i, g(zi) = f(x;) hence

(z—z;) (x—x;-1)

9(z) = flei)gy t fE) gy @€ w1

proc adaptive(a,b) =
comment: L is a global list whose tail element is currently a
if f is well approximated on the interval [a,b] by the line through
(a, f(a) and (b, f(5)) then
- L «— the catenation of L and {b}
else
m «— (a+b)/2
call adaptive(a, m)
; call adaptive(m, b)

5
{Q_ =

Remark. The midpoint step (ELSE) is the same as deciding we will use a
non-zero coefficient for the piecewise linear basis element

(z—a)/(m—a) z€la,m]
h(z)=4¢ (z—=0b)/(m—b) z€[m,?]
0 otherwise

Alternately, the non-midpoint step (THEN) is the same as pruning the basis
for the subtree rooted at h.

The referee has pointed out other recent work on basis sequences indexed
by dyadic trees. These tree basis are different from the tree basis in this
paper. For example, any unconditional basis is a tree basis in the sense of this
paper, but it is not always a tree basis that could be constructed via Ramsey
theory. The Ramsey theory tree basis do not require as many bounded
projection as the tree basis in the sense of this paper. Using Ramsey theory
for trees and a basic sequence indexed by the dyadic tree, in [4], it is shown
that each separable Banach space X with a non-separable dual, the space
X** contains an unconditional family of size |X**|. Another application
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of Ramsey theory for trees is in [12], where it is shown that if T*(Y™) is
non-separable and 7' : X — Y is a bounded linear map between separable
Banach spaces, then T must fix a sequence indexed by the dyadic tree with
properties like that of James Tree. More applications of Ramsey theory are
in [19]. None of the results of this paper use Ramsey theory.

2. PRELIMINARIES

Our notation about bases in Banach spaces follows [17] and [18] or [14].
The sequence (e,) is a Schauder (respectively unconditional) basis for its
closed linear span X = [e,] if there is a constant M to that || >, cp anen|l <
MY anenl for all 2 = >  azen, € X and all initial finite subsets F' =
{1,2,3...k} C N (respectively all finite subsets F' C N). .

A Banach space X is isomorphic to its hyperplanes (respectively its
square) if X ~ X @K where K is the scalar field (respectively if X =~ X®X).
A space X is said to be primary if X ~ Y @ Z implies that either X ~ Y
or X = 7.

There are many common ways of describing binary trees in analysis. We
use the (binary tree) predecessor function ¢ : N\{1} — N given by ¢(n) =
|n/2], Where || is the floor or greatest integer function. If ¢(n) = m, then
we say m is the parent of n and n is a child of m. Each integer m has two
children 2m and 2m + 1. A finite or infinite sequence of integers {n;} is an
initial branch if n; = 1 and ¢(n;4+1) = n;. Another common notation is for
a binary tree uses the Cantor set I' = 2%,

The subtree rooted at m, S,, is the collection of integers that are de-
scendants of m under ¢. This has the same structure as the complete tree
under a similarly function ® = ®,, defined inductively by ®(1) = m and
®(2n) = 2®(n), ®(2n + 1) = 2&(n) + 1. In the Cantor set view, this is a
dilation followed by a translation. We will call such ® a tree translation.

The level of integer n, £(n) = |logy n] is the number of generations to the
integer 1, the root of the tree. A branch permutation § is a permutation on
N that preserves 1 and parenthood. A branch permutation clearly preserves
levels while permuting the branches.

3. TREE BASIS

Definition 3.1. A finite subset F C N is a tree-subset if n € F\{1} implies
its predecesssor ¢(n) € F. A basis (en) for X is a tree basis if there is a
constant M < oo for that for all finite tree subsets F and z =), apen € X

1", paneall < MUY anenl.

Remark. The space X can be renormed so that the constant M is one. The
existence of a tree basis condition is strictly stronger than the existence
of a basis (Proposition 3.8) and strictly weaker than an unconditional ba-
sis (Proposition 3.10). However, our first chore is to show that (in some
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sense) a tree basis is the only intermediate notion between Schauder and
unconditional basis.

Definition 3.2. A function v : N\{1} — N s called a (shrub) predecessor
function if ¢(n) < n for all integers n.

Remark. The condition t(n) < n has two effects. Most importantly it
requires well-foundedness, that is there are no sequences (n;)$2; so that
¥(n;) = nit1. Secondly, it implies there is a single initial integer, 1, that

has no predecessor, and it is the root. This second condition is unimportant

as multiple roots (even infinitely many roots) are easily handled.

Definition 3.3. Given a predecessor function ¢ we define a fork or branch-
ing node to be an integer n with more than one solution to ¥(m) = n. Again
Y(m) = n implies n is the parent with respect to ¥ of m and m is a child
with respect to ¥ of n. Inductively the notions of ancestor and descendent
with respect to y are also defined as they are for trees. A set {n;} C N
is independent or an anti-chain if i # j implies n; and n; are unrelated,
neither is a descendent of the other. Independent sequences are mutually
incomparable.

Definition 3.4. Given a predecessor function v, we define a finite or infi-
nite subset F' C N to be a shrub subset if n € F\{1} implies ¢¥(n) € F. A
basis (en) for X is a shrub basis of there is a constant M < oo so that for
all finite shrub subsets F' and x =Y ane, € X.

13 cnenll < MY anenl

Lemma 3.5. If ¢ is a predecessor functién, F an infinite shrub subset and
(en) a shrub basis, then the projection P} anen) = 3, cp Qnen is bounded
by the shrub basis constant M.

Proof: This is almost automatic, we need to only show Y neF Onén CON-
verges. Let F, = FN{l,...k}. Since each Fj is a shrub subset of N, the
projections Py () anen) = 3, cp, anen are uniformly bounded in norm by
some M. If ) ane, has converges, then

q q
I anenll = PyD_ omen) < M| anen] — 0 as p,g — co,

nekF n=p n=p
p<n<g
and hence Py(}_ anen) — PO anen). |

Proposition 3.6. If there“is an infinite anti-chain M for the predecessor
function psi, then any shrub basis (en), with respect to psi, has an uncondi-
tional basic sequence (en)nem which is naturally complemented by

P(Z anen) = ZneM Qnén.

e
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Proof: Let M be the infinite anti-chain, let G be the collection of the
ancestors of M and let F = GN M. Both G and F are shrub sets and so
is any H with G ¢ H subsetF'. Note P = Pp — Pg where Pr and Fg are
projections given by Lemma 3.5.

To see (ep)nen is unconditional. let K be any finite subset K C M. The
projection Pr (3, cp @n€n) = Donex Onen 18 Poux — Pe which is bounded
by twice the shrub basis constant. N

Proposition 3.7. If the basis (en) has unconditional subsequence (en)nem,
which is naturally complemented, then there is a permutation m so that
(er(n))is a tree basis.

Proof: Let N = N\M Let N = (n;) and M = (m;) be listing of these sets
as increasing subsequences of N. Define m(n;) = 27! so that (e;(n,)) is left
most branch of the tree and (eq(m,)) is the rest. If F is a finite tree subset
then so is F Nw(n;) = Fr, and Fr = F — Fr. The projection onto F is the
sum of the projection on Fy, which is an initial segment of w(n;), and Fg,
one of the unconditional projections. Thus (e,(s)) is a tree basis. |

Corollary 3.8. X has a tree basis if and only if X = U @Y, where Y has
a basis and where U is infinite dimensional and has an unconditional basis.

James’s Theorem on spaces with unconditional basis gives the next result.

Corollary 3.9. A space with a tree-basis contains a subspace isomorphic to
Co, 1 or a complemented infinite dimensional reflexive space.

Proposition 3.10. The space J, James quasi-reflexive space has a tree
basis.

Proof: One common basis for J'is the shrinking basis e, with norm

. k
1
1D amenll = sup(d_(an(it1) = on(i)?)?

i=1
where the sup is over finite sequences n(1) < n(2) < ...n(k) < n(k + 1).
o0
the projection P(>" anen) — > (aon + oont1)(e2n + €2n+1)/2 is a norm
1

one projection with range ison?etric to J. The projection = I — P has
range [(ean — eant1)], and (ean — ean+1)5o.; is equivalent to the usual basis
of Hilbert space. Thus the basis which alternates between these two basic
sequences ej + eg, €1 — €9, €3 + €4, €3 — €4, ... is a basis which satisfies the
hypothesis of Proposition 3.8. |

Remark. We have reproved the known fact that J = J @ ¢3. This known
fact and Corollary 3.8 is another way to prove J has a tree basis.

Remark. Is is well known that J cannot have an unconditional basis and
hence having a tree basis is strictly weaker than having an unconditional
basis.




6 Steven F. Bellenot

Proposition 3.11. If ¢ is a non-trivial predecessor function and X has a
Y shrub basis ey, then X has a tree basis.

Proof: Suppose for ¢ there is an integer n whose set of children M is
infinite. This is an anti-chain, so (en)nenr is unconditional by Proposition 3.6
and X has a tree basis(b,) Proposition 3.7. Otherwise ¥ has infinitely many
forks. By the Infinity Lemma, there is an infinite branch (n;) which contains
infinitely many forks, (n(s(¢)));. For each i, there must be m(i) # n(s(i)+1)
but ¢¥(m(i)) = n(s(i)). It follows that M = (m(i)) is an anti-chain. Thus,
as in the first case X has a tree basis. |

Remark. The “minimal” shrub ¢ is given by ©¥(n+1) = n which only requires
the same projections as those for a Schauder basis. There spaces X with a
basis with no non-trivial decomposition into Y @& Z. These must be spaces
without tree basis.

The next most “minimal” example would be the space X @ X, which has
a 1 shrub basis for ¢ given by ¢(n) = max{1l,n — 2}. Which has exactly
one fork, namely 1. Clearly X @& X is not isomorphic to X. There is an
infinite family of trivial predecessor functions realizable by the finite sums
X @ ... & X which do not have tree basis.

4. TREE TRANSLATION INVARIANCE

Given a tree basis (e,) for X we will say X is tree translation equivalent
(respectively tree translation invariant) if each transformation T of the form

T="T,
T(Z aneén) = Z Qned(n)

where ® = ®,, is a tree translation, is an isomorphism (respectively an
isometry).

Example 4.1. Any subsymmetric basis is tree translation invariant.

Example 4.2. Let C = C|0, 1], the continuous functions on the unit interval
with the sup norm. The usual Schauder system for {f € C: f(0) = f(1) =
0} is tree translation invariant, but not unconditional.

Example 4.3. The Haar system in a rearrangement invariant function
space X on [0,1] (actually the co-dimension one subspace of functions f
so that [ f =0) is tree translation equivalent.

Example 4.4. Tsirelson space T is an example of a space that is tree trans-
lation equivalent but not tree translation invariant. Tree translation equiva-
lence follows since the growth rate of the function ®,,(n) function is bounded
[6]. Attempts to renorm the space T to make it tree translation invariant
using the usual construction fail as this will generate a norm equivalent to
£y -norm.

Example 4.5. In [7], a superspace S of a Tsirelson space is constructed
that is not isomorphic to its square. By the theorem below, S is not even tree
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translation equivalent. However one side of the equation holds as || Y anen|| <
ITn (S anen)l

Tree spaces with bases satisfying similar one sided dominance conditions
were also constructed in [5].

Theorem 4.6. If (e,) is a tree translation equivalent basis for X, then

(1) X is isomorphic to its hyperplanes

(2) X is isomorphic to its square X & X

(3) X is isomorphic to an unconditional decomposition (X,) with each
X, naturally isomorphic to X -

Proof: Let K be the scalar field.

(1) The isomorphism T3 maps the complemented subspace W = [eg, ey, €3, ...]
so W is isomorphic to W K. Hence XK~ W ZdK~r WDZ ~ -
X. ~

(2) Let the isomorphisms T» and 73 have ranges Xy and X3 respectively.
Clearly X # X0 X3 d K~ X P X @K~ X @& X by part (1).

(3) Let Wy = XoUe; and Wy = T3(Wy,). The (W,) form a decom-
position of X and T3 provides a translation for this decomposition.
Obviously W, = X & K = X by part (1). [

Remark. Most of the known primary spaces (with exception of J [9]) are
tree translation equivalent. However Tsilerson space 7' is tree translation
equivalent but is known not to be primary [11] (page 58). It is not known if
all symmetric sequence spaces are primary. The usual conditions to imply
primary can be modeled after [10], [2], [1] and [3]. To apply the Pelcynski

decomposition method one needs two facts in addition to the theorem above.
~ First we need a condition that says X ~ Y @ Z implies either Y or Z has
a complemented copy of X. For tree spaces, this could be done with the
following complemented subtree condition below. Second we need a way to
shift ¥ into the the unconditional decomposition (X,) ~ (Y, & Z,) while
holding the Z, fixed. The usual proves require additional information on
the unconditional decomposition. For example, the fact it is a {5 sum in the
JT case.

Definition 4.7. A subtree Sof T is a subset of the integers so that the order
inherited from T s order isomorphic to the order of a binary tree. A tree
basis is said to have the complemented subtree condition if for each subtree
S, the basis (en)nes is equivalent to (en) and the projection Ps(d anep) =
Y nes Onen 15 bounded.

Example 4.8. The Tsirelson space T fails the complemented subtree con-
dition as we can pick a subtree S = (i(n)), so that the rate of growth is too
large for (en)nes to be equivalent to (en) [6].
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5. BRANCH INVARIANT TREE SPACES

Definition 5.1. A tree basis is branch invariant if for every branch permu-

tation 3 the operator
Tg(z anen) = Z Qn€a(n)

18 an isometry.

If 6,7 C N are a branches, then the basis {(e,) : n € 6} and {(es) : n € 7}
are isometrically equivalent in a branch invariant space.

Example 5.2. Rearrangement invariant spaces and symmetric spaces are
examples of branch invariant spaces as is JT. Since the basis of JT 1is
conditional, branch invariance doesn’t imply unconditionality.

Example 5.3. The space C is tree translation invariant but not branch
invariant. Indeed, if n(i) = 271, then (e,)) is equivalent to usual basis of
C, while if m(3) is inductively defined by m(i) = 1, m(2n + 1) = 2m(2n)
and m(2n+2) = 2(m(2n+1)) + 1 then (emy)) is equivalent to the summing
basts.

Proposition 5.4. In a space with a branch invariant tree basis (en), the
projection

0o M1 -1
PO i) =Y (> aonyi)( Y eangi) /2"
n=0 {=0 =0

has norm one.

Proof: If o; is non-zero only when it’s level, £(i) < n, then P is the average
of 2™ branch permutations generated by the permutations on level n integers.
[ ]

Remark. If the basis is the standard Haar basis, the range of this projection
is the closed linear span of the Rademacher functions.
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