Schauder's basis for C[0, 1

Steven F. Bellenot Tree Basis in Banach spaces

Recursive Adaptation

Function in Green, Approximation (connecting circles) in Red

Steven F. Bellenot

Tree Basis in Banach spaces

Tree Definition

Steven F. Bellenot

Tree Basis in Banach spaces

Conditional, Tree, Unconditional

The sequence $\{e_n\}$ is basic when

$$\|\sum_{n\in F}a_ne_n\|\leq M\|\sum_na_ne_n\|$$

- Conditional for all initial $F = \{1, ..., N\}$
- Tree basis: for all tree subsets F.
- Unconditional for all finite F

Tree = $B \oplus U$ part

Steven F Bellenot

Tree Basis in Banach spaces

Tree = $B \oplus U$ part II

From $B \oplus U$ to Tree basis.

Tree Basis Examples/Properties

- Any unconditional basis is a tree basis.
- invariant Tree like spaces C[0, 1], JT, Haar basis in rearrangement
- The quasi-reflexive space $J \approx J \oplus \ell_2$.
- Cor: There are spaces with tree basis that don't have an unconditional basis
- Cor: Tree basis space has c_0 , ℓ_1 or reflexive subspace.
- basis Cor: There are spaces with basis that don't have a tree

Tree Translation – limited subsymmetry

whole tree to the subtree rooted at M. The tree translation Φ_M is defined recursively. It moves the

- $\Phi_M(1) = M$
- $\bullet \ \Phi_M(2n) = 2\Phi_M(n)$
- $\Phi_M(2n+1) = 2\Phi_M(n)+1$
- $ullet \Phi_M(\sum a_n e_n) = \sum a_n e_{\Phi_M(n)}$

If Φ_M is always an isometry, then the space is Tree Translation Tree Translation Equivalent. Invariant, and if Φ_M is always an isomorphism, the the space is

Invariance vs Equivalence

- C[0, 1], JT are tree translation invariant
- Tsirelson's space T is tree translation equivalent, not invariant - even when re-normed
- translation equivalent rearrangement invariant spaces are (in general only) tree
- There are Tsirelson superspaces which are not even tree translation equivalent

Properties of Tree Translation Equivalent

- A Tree Translation Equivalent space X is
- ≈ hyperplanes
- \approx $\times \oplus \times$
- pprox unconditional sum (X_n) with each $X_n pprox X$

Primary

The space X is primary, if $X \approx Y \oplus Z$ implies $X \approx Y$ or $X \approx Z$.

- Most Primary spaces are Tree Translation Equivalent (JT, C[0, 1], certain Rearrangement Invariant spaces)
- Tsirelson's T is not primary
- Does Tree Translation Invariance imply primary?
- Subsymmetric bases are Tree Translation Invariant

Branch Invariant Tree Spaces

A generalization of symmetric bases.

- Permutation π is Branch Invariant if
- $\ell(i) = \ell(\pi(i))$ preserves level and
- $\phi(\pi(i)) = \pi(\phi(i))$ preserves branches
- A tree basis $\{e_n\}$ is Branch Invariant if for branch invariant permutations π

$$\|\sum a_n e_n\| = \|\sum a_n e_{\pi(n)}\|$$

Examples Branch Invariant

- JT, rearrangement invariant spaces
- Not C[0, 1], some branches c_0 , some the summing basis.
- T can be renormed to be Branch Invariant

Rademachers complemented

In a branch invariant tree basis, the projection

$$P(\sum a_i e_i) = \sum_{n=0}^{\infty} (\sum_{i=0}^{2^n-1} a_{2^n+i}) (\sum_{i=0}^{2^n-1} e_{2^n+i})/2^n$$

has norm one.

For the Haar basis, this is the projection onto the Rademachers.

Summary

- ullet The Tree basis is equivalent to ${oldsymbol{\mathcal{B}}}\oplus{oldsymbol{\mathcal{U}}}$
- The Tree Translation Equivalence ≈ hyperplanes, squares, Invariant. $\mathsf{UD}(X_n \approx X)$; but not always primary, nor Tree Translaton
- Question, is there a tree translation invariant space that is not primary?