_COP_4020 Programming Languages 'w
Sample Solutions to Assignment 1 £4

Question #1: Two points for each correct answer. Partial credit, if -

guotes were missing, or tco many parantheses, or mixup
of CONS, LIST, etc. The following was expected:

=) (list ’'a 'D ‘c)

(a b e) _ '

~> (append ‘(a) '(b) '(c))

{a b c)

-> (cons ‘a (cons ‘b (cons ‘c ‘())))
{a b c)

=) (cons ‘a {(cons 'b (cons ‘c ())))

{a b ¢) *

-) {cons ‘a (cons ‘b (cons ‘c nil)))
{a&a b c)

There are severval ways to
solve this, depending what
you-select for the empty
list. '

Qe et Ne \e
|e W Ne W

ng;tion #2: One point for each correct answer.

=% {length ()) ;3 LENGTH takes a list as

¢ ;+ argument and returns the

-» (length ‘(a b ¢)) ;:; number of elements on the
3 ;; highest level of this list.
-3 (length ‘(a (b (¢)) 4))

4 - ——————— -~ 3 elements

Qusstion #3: No points on this one, just to show you that you can get
system functions pretty-printed, and how a DO-loap works
in LISP:

-» (pp length)
(def length
(lambda (818)
(cond ((and 818 (not (dtpr $18)))
(error "length: non list argument: " $18))
(t (cond ((null $1¢§) 0O)
(t (do ((1l1 (cdr 818) (cdr 11))
(11 (|1+] 1)))
((null 11) 4))))N))

e

“- Ws WP Tm =Wu

Me Mo We WMo W3 W W NS We We W M2 W Ws W m

returns immediately with value nil, the second condition is tested,
was nil, (null nil) returns T, so 0 is returned by length.

message (function error can be used in any user defined function).

efter each iteration with (cdr 11). The wvariesble 1 1s our counter.

incremented by 1 after each iteration.

RO e Ve WA Yy W e o We M2 s o

10 more element left. The value returned is the last value of 1.

Sometimes the pretty-printer doesn’t print the structure properly., so

I rearranged it. The funetion has two main CONDitions, first it checks
if the argument 1 has a value. If the value is nil, the function AND

whalich is the catch-all case T, and we check (null §1$). Since the value
If there is a non-nil argument, that is not a list, we enforce an error
If we have an argument that is a list that i1s not empty, we execute the
D0~-loop. The loop has two local variables: 11 and i. The initial value
of 11 is (cdr $18), since we already know that the list is not empty we
know that there must be at least one argument. The variable 1s updated
Initial value is 1, since we start with the second element. 1 will be

Tinally, the DO-loop terminates, if we cdr-ed through 11, and there is

Definitions

call by text -- all applied occurences of the formal parameters are replaced
by the text of the actual parameter with any embedded identifiers left
to bound in the local environment.

call by name -- all applied occurences of the formal parameters are replaced
by the expression for the actual parameter with any embedded identifiers
bound as they were in at the point of call.

CALL BY WHAT or is it PASS BY WHAT
int i, m, A[4]; /* globals */

main ()

{
i=2; m=2; A[0} = 1; A[1l] = 0; A[2] = 3; A[3] = 4;

P():
}

void swap_set (int x, int y)

{
int t;

m=1; t = x; x=y; y = t;
}

void P (void)

{

int m = 3 /% call it P.m so it is not confused with the global m */

/* before */
swap_set (i, A[i])
/* after */

}

And the results are:

i m P.m Al0] All] A[2] Al3]
before 2 2 3 1 0 3 4
and after, if the parameters are passed ...
by value 2 1 3 1 0 3 4
by reference 3 1 3 1 0 2 4
by name 3 1 3 1 0 3 2
by text 3 2 1 1 0 3 2

