Final by
COP 4020 15 Dec 89

Each problem is worth 10 points. Budget your time carefully.

1 Terminology: Match the letter of the phrase (below) that best
applies to the following terms:

inheritance aliasing name equivalence
generic static dynamic
overloading) method structural equivalence

encapsulation

A. Things which can be determined at compile time.

B. Things which are determined at run time.

C. Allows factoring out common code so that a given piece of code
need appear only once.

D. A template for a procedure or package abstraction which can be
used for more than one type.

E. A procedure or function which associated to a particular object or
class.

F. A single name denoting more than one thing within the same scope.
- G. A single data object with two or more names. ,

H. Two objects are of the same type if they are declared as coming
from the same domain of values.

I. Two objects are of the same type if they are declared together or
with the same type identifer.

J. The practice of hiding information that the user doesn't need to
know about the implementation of the abstraction.

2. Lisp 1: Draw binary tree representations of the following S-
expressions:

@.(c) (ap.c) (a (5 c) (00) ‘(‘n“ -' (ni’I - nil)

3. Fill in the blanks:

A. A is an implicit type conversion and a

is an explicit type conversion.

B. A word has special meaning in certain syntactic
contexts and a word can’t be used for a programmer-
declared object.

C. The of an operator is its priority in the absence of
parentheses. The of an operator is the way it

groups with itself.

D. Algol used two forms of parameter passing, call by value and call

by In C, by the use of macros (#define’s with parameters)

one can get the same effect as parameters passed by
. In C, Pascal, Ada and Algol, local variables are bound to absolute

addresses at time, while global variables are bound to

absolute addresses at time.

4. For the C code in the middle:

A. Assumming static int n = 35; |B, Assumming dynamic
scoping draw a contour I{“am() scoping, draw a contour
diagram (show parameters int x = 5;|diagram (show parameters
and procedures names t00). B(7); and procedures names too)
}_}wint ¥) at the line marked
{ /*show™/.
int z = 2;
Q(11);
é(int W)

/*show*/

}

Program Final; Var i, j:integer; a: array([l..2] of integer;
Procedure One; begin i := 2; end;
Procedure Two; Var i:integer; begin One; end:

Procedure Swap (x, y:integer); Var i, t: integer;
begin t := x; x 1= y; y := t; end.

begin Two; a[l]:= 3; a[2):= 1; J:= 2; Swap(Jj, A[j])/end.

5. For the Pascal-like code above:

A. If Dynamic scoping is used when procedure two calls procedure
one, which “i” is assigned the value two?

B. If Static scoping is used when procedure two calls procedure one,
which “” is assigned the value two?

C. If the call to Swap is call by reference, what are the values of j,
a[1] and a[2] after Swap returns?

D. If the call to Swap is call by value, what are the values of j, a[1]
and a[2] after Swap returns? -

E. If the call to Swap is call by name, what are the values of j, a[1]

and a[2] after Swap returns

6. Project (Lisp): evaluate (and simplify where possible):
A. (pairlis '(w x y z) (a7 (c) nil) nil)

?B. (assoc 'z '((t.7)(u lambda (x) (y))(w.z)(z.5)(t.z)(z.a)(good.doctor)))
C. (mapcar '(lambda (x) (times x (plus x 1))) '(2 5 7 11))

D. (label fn (lambda (x) ~
(cond ((eq x 0) 2)(t (plus x (fn (difference x 1))))) 5)

7. Replace the recursive routine mapPlus2 with an equivalent non-

recursive routine.
typedef struct node { int value; struct node * next;} Node;
Node * newNode { return (Node *) malloc (sizeof (Node)):}

Node * mapPlus2 (Node * list)

{
Node * temp;

if (list == NULL)

return NULL;
temp = newNode ()
temp->value = list->value + 2;
temp->next =

mapPlus2 (list->next);
return temp;

8. Project: Use C to write a recursive-descent recognizer for the
grammer below. Assume token is the next CHARACTER in the input
stream. Assume the function advance(); advances the token to the
next character. Assume a main() which has already called advance()
once. (i. e. main() could be {advance();printf("%s\n", have_W()? "True"
© "False");} Assume the input stream has no white space or newline
characters. Write the boolean functions have W (and respectively.
have X) which return true or false depending on if the input is a
strina_in W_(respectively, in X). (Sort of like get_s and get_t but
they return true or false instead of anything useful.) W is the start
symbol, and X is the only other nonterminal.

W = X | %%

X:=3W$ | @X|#

9. Write “pure” (don’t use set or setq) recursive Lisp functions for:
A. lat - a boolean function with one parameter x. Assume x is a list.
The function lat returns true if x is nil or if x is a list of atoms.
B. reverse - a function with one parameter x. Assume x is a list,
The function reverse returns the list x in reverse order. For example

(reverse '(1 2 3)) is (3 2 1).

C. similar - a function with two (s-expression) parameters x and vy.
The function similar returns true if both x and y have the same
binary tree representation except for the names of the atoms. For
example (1 (2) 3) and (a (b) ¢) are similar but (a) and ((a)) are not.

10. Consider two implementations of the C switch statement:

“switch (i) {case 1: S1; break; case 2: S2; break; case 5: S5; break;
default: s6:)". (The statement “goto L0+i” is @ computed goto; for
example, if i=3 this goes to the third line after LO, where it says

“goto L6".)
(A)

if i<l then goto L6;
if i>5 then goto L6;

10: goto
goto
goto
goto
goto
goto

Li: S1;
goto

.2 S2;
goto

¢L5: S5;
goto

L6: 56;

LO+1;
1l;
L2;
L6;
L6;
L5;

L7;
L7;

L7;

L7: (continue)
Suppose we generalize (A) and (B) above for a switch statement
whose lowest and highest case labels are L and H respectively, and
which has N nontrivial cases excluding the “default”. (Above L=1,
H=5, N=3.) Suppose the “goto LO+i" takes two instructions and each
other “goto” takes one instruction, and each “if ... then ...” takes

three instructions.

L2:

L5:

L6:
L7:

(B)

if 1 # 1 then goto L2;
S1;

goto L7;

if i # 2 then goto L5;
52;

goto L7;

if 1 # 5 then goto L6;
S5;

goto L7;

S6:

(continue)

Give algebraic formulae (in terms of L, H and N) for the (worst
case) execution time and code space (both in number of instructions)
for the switch code alone (i.e. excluding the instructions for $1-S6).
Code Size:

Code Size:

(A) Execution Time:
(B) Execution Time:

Final by KE‘?

COP 4020 15 Dec 89

Each problem is worth 10 points. Budget your time carefully.

1 Terminology: Match the letter of the phrase (below) that best
applies to the following terms:

. inheritance = aliasing :.L name equivalence
D generic A _static 2 dynamic
= overloading E method _H structural equivalence

. encapsulation

A. Things which can be determined at compile time.

B. Things which are determined at run time.

C. Allows factoring out common code so that a given piece of code

need appear only once.

D. A template for a procedure or package abstraction which can be

used for more than one type.

E. A procedure or function which associated to a particular object or

class.

F. A single name denoting more than one thing within the same scope.
~ G. A single data object with two or more names.

H. Two objects are of the same type if they are declared as commg

from the same domain of values.

I. Two objects are of the same type if they are declared together or

with the same type identifer.

J. The practice of hiding information that the user doesn't need to

know about the implementation of the abstraction.

2. Lisp 1: Draw binary tree representations of the following S-

expressions:
(@a.(c) (a(b.c) (nil . (nil . nil))

AN
| : CA wil b g

(oA CLOW™
3. Fill in the blanks:
A A @gm is an implicit type conversion and a Cast
is an explicit type conversion.
B. A lgg% word has special meaning in certain syntactic
contexts and a reseyyl word can’t be used for a programmer-
declared object.
C. The of an operator is its priority in the absence of
parentheses. The as%a&hd@:{zaof an operator is the way it
groups with itself.
D. Algol used two forms of parameter passing, call by value and call
by MW . In C, by the use of macros (i#define’s with parameters)
one can get the same effect as parameters passed by J—%L
E. In C, Pascal, Ada and Algol, local variables are bound to absolute
addresses at _Yun time, whijle global variables are bound to
absolute addresses at Mnh{/lo@d time.

4. For the C code in the middle:

A. Assumming static int n = 35; |B. Assumming dynamic
scoping draw a contour r{‘am() scoping, draw a contour
diagram (show parameters int x = 5;|diagram (show parameters
and procedures names too). ; B(T) and procedures names too)
P(int y) at the line marked
{ /*show*/.
int z = 2; e
a(1i); 7
(}Q(int w)
{
show [
b b

Program Final; Var i, j:integer; a: array(l..2] of integer;
Procedure One; begin i := 2; end;
Procedure Two; Var i:integer; begin One; end;

Procedure Swap (%, y:integer); Var i, t: integer;
begin t := x; x =y; y := t; end.

begin Two; al[l):= 3; a[2]):= 1; Jj:= 2; Swap(Jj, A[Jj]);end.

5. For the Pascal-like code above:
A. If Dynamic scoping is used when procedure two calls procedure

one, which “i” is assigned the value two? Jyy, ¢ < ‘e ome T WO

B. If Static scoping is used when procedure two calls procedure one,
which “” is assigned the value two? Tiyal,L <y 6(055\

C. If the call to Swap is call by reference, what are the values of j,
a[1] and a[2] after Swap returns?

J=4 A1l =3 Al]l= 2

D. If the call to Swap is call by value, what are the values of j, a[1]

and a[2] after Swip: :ret%ns? A Ei\] e Afz] = 1

E. If the call to Swap is call by name, what are the values of j, a[1]
and a[2] after Swap returns

g ablez ABI=1

6. Project (Lisp): evaluate (and simplify where possible):
A. (pairlis '(w x y z) '(@ 7 (c) nil) nil)

(.3 (x3) (3¢) @))
'B. (assoc 'z '((t.7)(u lambda (x) (y))(w.z)(z.5)(t.z)(z.a)(good.doctor)))
(%,5.)
C. (mapcar '(lambda (x) (times x (plus x 1))) (2 5 7 11))
(6 30 St !3%)

D. (label fn (lambda (x) : -
(cond ((eq x 0) 2)(t (plus x (fn (difference x 1))))) 5)

St+4+3+2+] + 2
[+

7. Replace the recursive routine mapPlus2 with an equivalent non-

recursive routine.
typedef struct node { int value; struct node * next;} Node;
Node * newNode { return (Node *) malloc (sizeof (Node)‘);}

Node * mapPlus2 (Node * list) - Node ¥ M’dpﬂuSZ (MDA_Q ¥ l{S‘t>
{
Node * temp; i Node. * }\eaa.) *,te, T .)
if (list == NULL) , ' ict = =]
:JL:eturn NULL; l{ (LlSt NDU'> Y&-\MV\)~))
Eemp = ninode{) ;t ;. 2 I;:O(“ (htaz} = Fomp = new Node O 3
emp->value = list->value + 2; - 3 . A .
temp->next = lst 'bS = list - hex t)§
mapPlus2 (list->next); ? '
return temp; temp >valw. = ﬁs-{-_} VZ}’M—fZ
} teyap -2 next = new Node ()

bewmp = {cwv?—:? nent™

~ towmp = Mo L vetuan Y‘CBD\‘)
8. Project: Use C to write a recursive-d%scent recognizer for the
grammer below. Assume foken is the next CHARACTER in the input
stream. Assume the function advance(); advances the token to the
next character. Assume a main() which has already called advance()
once. (i. e. main() could be {advance();printf("7%s\n”, have_W()? "True"
© "False");} Assume the input stream has no white space or newline
characters. Write the boolean functions have W (and respectively.
have X) which return true or false depending on if the input is a
string in W _(respectively. in X). (Sort of like get_s and get_t but
they return true or false instead of anything useful.) W is the start
symbol, and X is the only other nonterminal.

\)/(V :Z=é(vlvc:${o<|’o@)(|# (’)O(itm gb‘l”__ YC)
=) L, &
g i (token == &)
P _w 0 4
{6 5 Advana O,
i)c (tohen == {070‘> 7 retuan MWL)/
/
7 advanee ()} : f (doken== @}
if (tolan =< g A > L PdnE . 0‘3(: i
2 AMMC) ‘/ ; Yetunwn Qe+ —
rebuantrnl) [)C é‘h)h e 55
°X3 | s 3 e
) advanct =~
: %érfrm@) f (1 qetw0) return false
g o i Croren=2)

els ? DA eL (); ve)'u‘\f'r\ 'Bfﬂfef)

i tovin aet X 0
Ye n.g vc\tuwfab;e;

elsc

5 5 mdvomer A
2 w;huwn. oDBLQCj

N W

(det |

55

vy
(ear;()\@a‘rb)]

(t (awd
(Siwu'i‘ﬂ'\f
(Similov

[

9. Write “pure” (don’t use set or setq) recursive Lisp functions for:
A. lat - a boolean function with one parameter x. Assume x is a list.
The function lat returns true if x is nil or if x is a list of atoms.
B. reverse - a function with one parameter x. Assume x is a list.

The function reverse returns the list x in reverse order. For example,§
(reverse '(1 2 3)) is (3 2 1). v
C. similar - a function with two (s-expression) parameters x and y. ‘;‘ga
The function similar returns true if both x and y have the same <

binary tree representation except for the names of the atoms. For
exa;nfleéﬂ? (2) 3) and (a (b) c) are similar but (a) and ((a)) are not..

T
Ceond (a0 wd LD i conLl(Cnmle) hi\>

(¢t (and (alomfcar D (a{cde D)) (& (Qppend (revecse (c
1 P (ust (cav 2

10, Consider two implementations of the C switch statement:
“switch (i) {case 1: S1; break; case 2: S2; break; case 5: S5; break;
default: S6;}". (The statement “goto 10+i” is a computed goto; for
example, if i=3 this goes to the third line after LO, where it says
“goto L6".) '

(A) (B)
if i<l then goto L6; if 1 # 1 then goto L2;
. if i>5 then goto L6; S1; '
10: goto LO+i; goto L7;
goto 1Ll; L2: if i # 2 then goto L5;
goto L2; S2;
goto L6; : goto L7; .
goto L6; L5: if i1 # 5 then goto L6;
goto L5; S5;
Ll: sl; goto L7;
goto L7; L6: S6;
L2: S2; L7: (continue)
goto L7;
s L5: S5;
goto L7;
L6: S6;
L7 (continue)

Suppose we generalize (A) and (B) above for a switch statement
whose lowest and highest case labels are L and H respectively, and
which has N nontrivial cases excluding the “default”. (Above L=1,
H=5, N=3.) Suppose the “goto LO+i" takes two instructions and each
other “goto” takes one instruction, and each “if ... then ...” takes
three instructions. _

Give algebraic formulae (in terms of L, H and N) for the (worst
case) execution time and code space (both in number of instructions)
for the switch code alone (i.e. excluding the instructions for S1-S6).
(A) Execution Time: Code Size: B:Q‘IH“LJHS**NM/
(B) Execution Time: _3N 1 | Code Size: _ 4N/

>

X

(aton

a“mV\ (-3) ny

o (laudda

Ceemd (Catom x)

(

(def revense (e L

(cArXS>

vX) C“"}V_@

3

(

