Do Problems 1-12, 1-17, 1-19, 2-8, 2-36, 2-37, and 9-11, in text.

- I) Do problem 1-24 in text and use the problem to prove that the real numbers are uncountable.
- II) If $\{A_n\}_{n=1}^{\infty}$ is a sequence of sets, we define

$$\lim_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_n : \lim_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_n .$$

Prove the following theorem, and state and prove an analogue for lim A

THEOREM: The following are equivalent

- 1) A = lim An
- 2) $A = \{x : x \text{ belongs to infinitely many } A_n\}$
- 3) $\chi_A = \overline{\lim} \chi_{A_n}$ (See definition on P. 68)

III) If $\lim_{n \to \infty} A_n = \lim_{n \to \infty} A_n$ we call their common value $\lim_{n \to \infty} A_n$. Fill in the blanks in the following theorem and prove it.

THEOREM: If (χ, \mathcal{R}, μ) is a measure space and if $\{A_n\}_{n=1}^{\infty} \subseteq \mathcal{R}$, then

- A) $\mu(\underline{\lim} A) < \underline{\lim} \mu(A)$;
- B) $\overline{\lim} \mu(A_n) \leq \mu(\overline{\lim} A_n)$ provided $\mu($) < ∞ .
- C) If $\lim_{n \to \infty} A_n$ exist and $\mu($) < ∞ , then $\lim_{n \to \infty} \mu(A_n)$ exists and $\mu(\lim_{n \to \infty} A_n)$ = $\lim_{n \to \infty} \mu(A_n)$.
- IV) Let \mathcal{G} and \mathcal{G} be semialgebras of sets, and let $\mu:\mathcal{G} \to [0,\infty]$ and $\nu:\mathcal{G} \to [0,\infty]$.
 - A) Prove that

PROBLEM SET Due 11/24/69

Math 282a REAL ANALYSIS

In these problems, do not use any results not given in class unless they occur on earlier assigned problems. Prove other results you need.

2-46, 3-19, 3-28, 4-5, 4-16, 4-20, 4-25, 11-12, 11-20, 11-216.

- I. Let F(x) be a normalized increasing function, v be the Borel measure defined from F, and m be Lebesque measure restricted to the Borel sets.
 - Prove that F(x) is Borel measurable.
- 9) If ϕ is m integrable show that $\phi(F(x))$ is v integrable and that $\int \phi dm = \int \phi(F(x)) d\nu(x)$. [Hint: First use Problem 12-12 to prove this for characteristic function.]
 - If $\phi(F(x))$ is v-integrable, then prove $\phi(x)$ is m-integrable [Hint: Look at o and o.]
 - D) If ϕ is m-integrable and E is a Borel set, prove

 $\int \phi dm = \int \phi(F(x)) dv$ F(E) = E

We use the notation and results of Problem 11-9. If f is an extended real valued function on X, then N(f) is the set on which f is non-zero. f is said to be $\mathcal R$ measurable if $f^{-1}(E) \cap N(f)$ belongs to R whenever E is a Borel set

Prove that f is R measurable if, and only if, f is B measurable and N(f) belongs to R.

- B) Define Ifdy in the obvious way starting with R measurable non-negative simple functions. Prove that Ifdu = Ifdu = Ifdu if the first integral exists.
- If f is $\bar{\mu}$ integrable, prove that f is μ integrable. What if f is u integrable?

 $f^{-1}(E) \in \mathbb{B} \implies f^{-1}(E) \in \mathbb{R} \implies f$ wintegrable?

A,B \(\text{B} \in \text{A} \times \text{B} = \text{N} \times \\ \times \text{A} \times \text{B} = \text{N} \times \\ \times \text{A} \times \text{B} \text{B} \text{C} \\ \times \text{A} \times \text{B} \text{C} \\ \text{A} \text{A} \text{A} \text{B} \\ \text{C} \\ \text{A} \text{A} \text{B} \text{C} \\ \text{A} \text{A} \text{A} \text{A} \text{C} \\ \text{A} \text{A AN MANBERIA.

A'nB'eR

- III. Let (X, B, μ) be a measure space and {f_n} a sequence of measureable functions. We say f_n converges to f almost uniformly if, for all ε > 0, there is a set E of measure less than ε, such that f_n converges to f uniformly on the complement of E.
 - A) If f converges to f almost uniformly, prove that f converges to f in measure and also a.e.
 - B) Give an example for which f converges to f a.e, but f does not converge in measure or almost uniformly.
 - c) Frove Egoroff's Theorem: If u is a finite measure and f converges to f a.e., then f converges to f almost uniformly.

[Hint: Redo Propositions 3.23 and 3.24 in appropriate language and your own notation, and read the hint in Problem 3-30]

Math 282a REAL ANALYSIS

Do problems 10.5, 12.6, 21.5, 18.21 (23, 10.05, 10.05).

(Show that the given sets are measurable as well; don't do part of problem on p. 274).

Let X = Y = [0,1] with Lebesque measure. Let $f(x,y) = 1/x^2$ if x > y, $f(x,y) = -1/y^2$ if y > x and f(x,y) = 0 if x = y.

- A) Find [ff(x,y)dxdy and fff(x,y)dydx.
- B) What is $ff^{+}(x,y) d(x,y)$ and $ff^{-}(x,y) d(x,y)$?

Assume Tonelli's theorem for finite measure spaces and prove it for o-finite measure spaces.

III. Let (X, \mathcal{R}, μ) and (Y, \mathcal{B}, ν) be measure spaces and let E and F be measureable subsets of X and Y, respectively.

Prove that the restriction measure of μ x ν to E x F is the same as the product measure of the restrictions of μ and ν to E and F, respectively.

- B) Use A) to prove Tonelli's theorem for $f(x,y) \ge 0$ with $\{\langle x,y \rangle : f(x,y) \ne 0\}$ o-finite (without of course assuming μ and ν o-finite). How much of Fubini's theorem can you prove for non o-finite μ and ν [Hint: See Problem 11-20.]
- IV. Let \mathcal{B}_1 be the Borel sets of \mathcal{R}_1 and \mathcal{B}_2 be the Borel sets of \mathcal{R}_2 . Prove that

B1 = B1 = B2

DO ANY FIVE PROBLEMS

- I. A) Suppose that S and T are sets of non-negative extended real numbers. Prove carefully that $\sup(S + T) = \sup(S) + \sup(T)$.
 - B) Part A) can be used to prove one of the following inequalities for nonnegative measureable functions. Which one? Prove it.

$$\int (f+g) \le \int f + \int g \text{ or } \int (f+g) \ge \int f + \int g$$

- C) Prove f(f+g) = ff + fg for non-negative measureable functions. State, as unproved lemmas, the results you need about limits of functions.
- II. Suppose (X, \mathcal{M}, μ) is a measure space and $\alpha = \sup \{\mu(E) : \mu(E) < \infty\}$. Show that there exists an A in \mathcal{M} with $\mu(A) = \alpha$. If α is finite, what can you say about measureable subsets of A? Prove it.
- III. Suppose that (X, \mathfrak{M} , μ) is a measure space and that $\mathfrak{f}\mathfrak{f}$ and $\mathfrak{f}\mathfrak{g}$ exist.
 - A) If $\int f d\mu = 0$ for all E in \mathcal{M} , prove that f = 0 almost everywhere.
 - B) Show by example that it is possible for $\int f \ d\mu = \int g \ d\mu$ for all measureable E, without f = g almost everywhere.
 - C) Prove: if f and g belong to $L^1(\mu)$ or if μ is finite, and if $\int f \ d\mu = \int g \ d\mu$ for all E in \mathcal{M} , then f = g almost everywhere. E
- IV. Let (X,\mathcal{M}) be a measureable space and let \mathcal{V} be the collection of all finite signed measures on \mathcal{M} . For ν in \mathcal{V} , define $\|\nu\| = |\nu|(X)$. Prove that \mathcal{V} is a vector space on which $\|\nu\|$ is a complete norm (i.e., \mathcal{V} is a Banach space).
- V. A) Let m be Lebesgue measure on the reals, R. If m(E) is finite and $\epsilon > 0$, prove that there is a set J which is a union of a finite number of finite intervals, such that m(J Δ E) < ϵ .
 - B) State and prove a theorem characterizing all positive linear functionals on $C_{\rm c}({\bf R})$ in terms of normalized increasing functions. In your proof, you may state as unproved lemmas, any results about general abstract measures or measures on locally compact spaces; but prove any properties special to the real numbers.

- 19t - 13-

5

- VI. Suppose that μ_1 and ν_1 are finite measures on (X, $\cal R$) and that μ_2 and ν_2 are finite measures on (Y, $\cal B$). Using any results from class, prove:
 - A) If $\mu_1 \perp \nu_1$ then $\mu_1 \times \mu_2 \perp \nu_1 \times \nu_2$
 - B) If $\nu_1 << \mu_1$ and $\nu_2 << \mu_2$, then $\nu_1 \times \nu_2 << \mu_1 \times \mu_2$
- VII. Suppose that \mathcal{C} is a collection of subsets of X and that \mathcal{C} contains X and ϕ . Suppose also that $\mu:\mathcal{C}\to [0,\infty]$ and $\mu(\phi)=0$. Define $\mu^*(E)=\inf\{\sum_{n=1}^\infty \mu(C_n): \bigcup_{n=1}^\infty C_n \supseteq E; \{C_n\}\subseteq \mathcal{C}\}.$
 - A) Prove that μ^* is an outer measure.
 - B) State and prove a necessary and sufficient condition that μ and $\mu*$ agree on $\mathcal C$.
 - C) Suppose that $\, \mathcal{C} \,$ is an algebra and that $\, \mu \,$ is a measure on $\, \mathcal{C} \, . \,$ Prove that E is measureable if

 $\mu*(C) \ge \mu*(C \cap E) + \mu*(C - E)$, for all C in C. Prove that all sets in C are measureable.

- VIII. Let (x,\mathcal{M}) be a measureable space and let \mathcal{F}^+ be the set of non-negative extended real valued $\mathcal{M}-$ measureable functions. Do <u>two</u> of the following:
 - A) Suppose I : $\mathcal{J}^+ o [0,\infty]$ satisfies:
 - 1) I(f+g) = I(f) + I(g) 2) I(cf) = c I(f) if $c \ge 0$
 - 3) If $f_n \uparrow f$, then $I(f_n) \rightarrow I(f)$. Prove that $\lambda(A) = I(\chi_A)$ is a measure and that $I(f) = \int f \ d\lambda$ for all $f \in \mathcal{F}^+$.
 - B) Use Part A) to prove $\int f \, d\nu = \int f g \, d\mu$ for all f in \mathcal{J}^+ , if ν and μ are measures on (X, \mathcal{M}) and g is the Radon-Nikodym derivative of ν with respect to μ .
 - C) Assume that Lebesgue measure is translation-invariant, and use Part A) to prove

$$\int f(x+a) dx = \int f(x) dx$$

E $a+E$

D) State Tonelli's Theorem. Assume that it is true for characteristic functions and use Part A) to prove it in general.

- A. MULTIPLE CHOICE. Each problem is worth 10 points [-5 for first error; -2 for each of the others]. Circle all true cases.
 - 1. Let $f_{x_0}(y) = f(x_0, y)$ and $f^{y_0}(x) = f(x, y_0)$. Given that fmaps R^2 into R^1 and f_{x_0} is Borel measurable for all x_0 when is f Lebesgue measurable?
 - (a) For all y_0 , f^{y_0} is Borel measurable and $f^{y_0}(x) = 0$ for almost all x.

 - (b) For all y₀, f^{y₀} is continuous.
 (c) For almost all y₀, f^{y₀} is Lebesgue measurable and $f^{y_0}(x) = 0$ for all x.
 - (d) For all you fyo is Borel measurable.
 - 2. Indicate each case for which there is a "finitely additive positive measure py such that pa is defined on all subsets of X, $\mu(E) = n(E)$ whenever n(E) is defined, and $\mu(A) = \mu(B)$ if A and B are congruent.
 - (a) $X = R^{1}$ and m is Lebesgue measure.
 - (b) $X = R^2$ and m is Lebesgue measure.
 - (c) X= R3 and m is Lebesgue measure.
 - (d) X is the surface of the unit ball in R3 [i.e., $X = \{(x,y,z): x^2+y^2+z^2=1\}$ and m is the Borel measure for which the measure of each sperical rectangle is its area.
 - 3. Let (X,M, p) be a ofinite measure space and let f, g and h belong to $L^2(\mu)$. Which of the following are true?
 - is e I'(M). (a)
 - fg E L2(pl).
 - Ifgith & L1(M).
 - $\phi \in L^{3/2}(\mu)$ if $9\phi \in L^1(\mu)$ for all θ in $L^3(\mu)$.
 - Which of the following are true?
 - The set of rational numbers is a GA-subset of RT. (a)
 - If $\lim_{n\to\infty} ||f-f_n|| = 0$, then $\lim_{n\to\infty} f_n(x) = f(x)$ for (b) almost all x.
 - Each compact subset of R1 is the support of a continuous (0) function.
 - There is a measure space (X, M, μ), an f in $\mathbb{L}^1(\mu)$, and a sequence of measurable sets $\{E_n\}$ (not necessarily disjoint) such that, for all n_* $\int_{E_n} f \, d\mu > 1$, $p(E_n) < 1/n$. (d)

- B. Do exactly 6 of the following. State explicitly which problem is to be omitted, unless work is done on 6 or less.
 - and $\int_E f d\mu \ge 0$ for all E $\in M$. Prove that $f(x) \ge 0$ for almost all x.
 - 6. Suppose the measure μ on a σ -algebra in \mathbb{R}^2 is positive, translation-invariant, complete, and $\mu(\{(x,y): |x| \leq 1 \text{ and } |y| \leq 1\}) = 4.$ Explain why μ is Lebesgue measure or why it might not be .
 - F. Assume (X, \mathfrak{M}, μ) is a measure space, μ is a positive measure, $\mu(X) < \mathfrak{G}$, and \mathfrak{N} is a σ -algebra contained in \mathfrak{M} . Prove or disprove:

 "For any $f \in L^1(X, \mathfrak{M}, \mu)$, there is a $g \in L^1(X, \mathfrak{N}, \mu)$ for which $\int_E f d\mu = \int_E g d\mu$ if $E \in \mathfrak{N}$."
 - 8. Let S be a σ -algebra and μ a "finitely additive measure" on S. Prove that μ is countably additive if $\mu(\cup_1^\infty E_n) = \lim_{n \to \infty} \mu(E_n)$ whenever $\{E_n\}$ is an increasing sequence of measurable sets.
 - 9. Let E be a subset of R¹ whose Lebesgue measure is finite. Show that there is a subset S of E for which $n(S) = \frac{1}{2}n(E).$
- 710. Define "measurable function" and prove that if $\{f_n\}$ is a sequence of measurable functions, then the set of all x for which $\{f_n(x)\}$ converges is a measurable set.
- .11. Assume the measure space (X, S, μ) is ∇ -finite. Prove that there can not be uncountably many disjoint measurable sets $\{E_q: q\in A \text{ for which } \mu(E_q) > 0 \text{ for all } q\in A.$