INTEGRATION ON LOCALLY COMPACT SPACE

I. Preliminaries

- 1) X will always be a locally compact Hausdorf space. C will be the space of continuous real valued functions with compact support. S will be the set/extended real valued lower semi-continuous functions. In this and the next section I is a positive linear functional on C.
- 2) Urysohn's Lemma: If K is a compact subset of an open set V, then there exists an f in C with: f(x) = 1 on K; support f ⊆ V; and 0 ≤ f ≤ 1 for all x. [6, p. 39], [5, problems 8-19, 9-16, 9-17].
- 3) Elementary properties of S [3, pp. 22-27], [4, p. 117f], [2, pp. 89f].
- 4) Lemma: For each compact K, there exists a positive number M_K for which $|I(f)| \le M_K ||f||$, for all f in C whose support is contained in K. [2, p. 115], [2, p. 21], [4, p. 116].
- 5) Extension of I to S[†] and definition of \overline{I} . [2, pp. 116f], [3, pp. 18f], [4, pp. 118f]. Definition: $\mu*(A) = I(\chi_A)$.
- 6) Definition of almost regular measure space. [2, p. 177, def. (12.39)] uses this as his definition for regular measure space. Nearly the same definition is given in [6, p. 41, Th. (2.14) (b)(c)(d)].

II. Functionals and Measures

The following three theorems, whose proof we sketch in this section, are the main results of the subject.

- 1) Theorem: μ^* is an outer measure which induces an almost regular measure space (X, \mathcal{M}, μ) .
 - 2) Theorem: If f is a non-negative u-measureable function then $\overline{I}(f) = \int f \ d\mu$.
 - 3) Theorem: If (X, \mathcal{H}, v) is another almost regular measure space for which $I(f) = ff \, dv$ for all f in C, then $\mathcal{H} \subseteq \mathcal{H}$ and v is a restriction of μ .

Outline of Proofs:

4) Lemma: If $\mathcal{J} \subseteq S^{\dagger}$ and $f = \sup\{g: g \in \mathcal{J}'\}$, then $\overline{I}(f) = \sup\{\overline{I}(g): g \in \mathcal{J}'\}$.

Proof: First consider f and \mathcal{J} in C^{\dagger} . [3, pp. 25f, prop. 25], [2, p. 117], [4, p. 118].

- 5) A) If f and g belong to S^+ , then $\overline{I}(f+g) = \overline{I}(f) + \overline{I}(g)$. [2, p. 118, cor. (9.13], [4, p. 119], [3, p. 29].
- B) If $\{f_{\alpha}\}_{\alpha \in A} \subseteq S^{\dagger}$, then $\overline{I}(\underline{\Sigma}f_{\alpha}) = \underline{\Sigma}[f_{\alpha}]$. [2, p. 118], [4, p. 119], [3, p. 29]. We are mainly interested in ordinary countable sums.
- 6) A) If $\{f_n\}$ is a sequence of non-negative functions, then $\overline{I}(\Sigma f_n) \leq \Sigma \ \overline{I}(f_n)$. To prove this assume $\overline{I}(f_n)$ finite and choose g_n in S^+ with $f_n \leq g_n$ and $\overline{I}(f_n) > \overline{I}(g_n) \varepsilon/2^n$.
- B) μ^* is an outer measure. To prove this apply A) to characteristic functions. [2, p. 120, thm. (9.21)], [4, p. 121].

7) Regularity

- A) If K is compact, then $\mu^{\bigstar}(K)$ is finite. Just choose f in C^{\bigstar} with f $\geq \chi_{K^{*}}$
- B) $\mu*(E) = Inf \{\mu*(V) : V \supseteq E, V \text{ open}\}.$ [2, p. 121, Th. (9.24)], [4, p. 121].
- C) If V is open, $\mu^*(V) = \sup \{\mu^*(K) : K \subseteq V, K \text{ compact}\}$. To prove this apply the lemma of 4) to $\mathcal{J} = \{g \in C^+: g \le 1, \text{ support } g \subseteq V\}$ then use [6, p. 43, step III].
- 8) All Borel sets are μ^* measureable [2, pp. 123f, th. (9.32)] [1, pp. 208f]. This will prove Theorem 1).
 - A) μ^* is additive on disjoint opens, by 5) A).
 - B) μ^* is additive on disjoint compacts.
 - C) If μ and V are open $\mu*(U) \ge \mu*(U \cap V) + \mu*(U V)$.
 - D) All open sets are measureable.

9) Proof of Theorem 2)

- A) Theorem 2) is true for constant multiples of characteristic functions.
- B) If f is a simple function, $\overline{I}(f) \leq \int f d\mu$.
- C) If f is a simple function, $\overline{I}(f) = ff d\mu$. Easy to prove if ff is infinite. If finite choose g, a multiple of a characteristic function, with $g \ge f$ and fg finite. Then apply B) to g f.
 - D) $ff \leq \overline{I}(f)$. Proof: Choose simple $f_n + f$.
 - E) $ff \ge \overline{I}(f)$. Proof: Let $g_n = f_n f_{n-1}$ and apply 5) B).

- 10) Proof of Theorem 3).
 - A) ν is a restriction of μ *. [6, p. 41], [2, p. 178, Th. (12.41)].
- B) $\mathcal{N} \subseteq \mathcal{M}$. This follows from the fact that $\mu^*(U) = \mu^*(U \cap E) + \mu^*(U E)$, if U is open and E is in \mathcal{N} . [1, p. 208, Lemma].
- 11) Theorem: If (X,\mathcal{N},ν) is an almost regular measure space and if we define $I(f) = ff \ d\nu$ for f in C, then I is a positive linear functional and $\overline{I(f)} = ff \ d\nu$ for all non-negative measureable f. In particular $\nu(E) = \overline{I}(\chi_E)$ for all E in \mathcal{N} . [2, pp. 178f, Th. (12.42)].

This sets up a one-to-one relation between positive linear functionals and almost regular Borel measures. In particular 4), 6B), and the definition of \bar{I} in terms of sups and infs can be applied to ff dv.

III. Approximations and Regularity

- 1) Theorem: Suppose that I is a positive linear functional on C, that (X, \mathcal{M}, μ) is the measure space constructed from I, and that f is a real valued function, then the following are equivalent.
 - A) f is μ -integrable.
 - B) For all $\epsilon > 0$, there exists a g in C with $I(|f-g|) < \epsilon$.
 - C) For all $\epsilon > 0$, there exists a g in $L^{1}(\mu)$ such that $\overline{L}(|f-g|) < \epsilon$.
 - D) There exists a g in $L^{1}(\mu)$ with $\overline{I}(|f-g|) = 0$.
- E) For all $\epsilon > 0$, there exists $g_{\mu} h$ in S with $h \le f \le g$ and $\overline{I}(g-h) < \epsilon$.

The proof requires knowing that $L^{1}(\mu)$ is complete and proving that $\overline{I(|\phi|)} = 0$ implies ϕ is zero almost everywhere.

- 2) Definition of inner regular, outer regular, and regular. [6, p. 47]
- 3) Theorem: If (X, \mathcal{M}, μ) is almost regular and if E is a sigma-finite measureable set, then E is inner regular [2, pp. 137f, Th. (10.30)].
- 4) Theorem: If (X, \mathcal{M}, μ) is outer regular and X is sigma-compact, then μ is regular. Moreover, if E belongs to \mathcal{M} then:
- A) For all $\varepsilon > 0$, there exists a closed set F and an open set V with $F \subseteq E \subseteq V,$ and $\mu(V-F) < \varepsilon$.
- B) There exists sets A and B such that A is a G_{δ} , B is an F_{σ} , A \subset E \subset B, and $\mu(B-A)$ = 0.

A proof of roughly this result is in [6, pp. 47f, Th. (2.17)]. If μ is complete, any set E satisfying A) or B) is measureable.

5) Theorem: If X is sigma-compact and if every closed subset is a G_{δ} , then every Borel measure on X is regular. [5, pp. 305-307, prop. 6], [6, p. 48f, Th. (2.18)].

Note that every locally compact separable metric space satisfies the hypothesis.

IV. Signed Measures and Non-Positive Functionals

- 1) Definition of relatively bounded (i.e., satisfying I. 4) of ||I|| and of regular signed measures. [7, pp. 372f] [5, pp. 308f]
- 2) Theorem: If I is a relatively bounded linear functional on C, then there exist positive linear functionals I and I for which I=I-I. If I is bounded, so are I and I.

Proof: If f is in C^{\dagger} , let $I^{\dagger}(f) = \sup \{I(g) : 0 \le g \le f, g \in C\}$. In general $I(f) = I(f^{\dagger}) - I(f^{\dagger})$, and $I^{\dagger} = I^{\dagger} - I$. [7, pp. 371f, section 8-7], [5, pp. 309f, prop. 7]

3) Theorem: If I is a bounded linear functional on C, then there exists a unique finite regular signed Borel measure ν for which I(f) = ff d ν for all f in C.

Proof: Apply Section II to I and I. [5, pp. 310f, prop. 8]

4) Lemma: If I and ν are as above $I^{\dagger}(f) = ff d\nu^{\dagger}$ and $I^{\dagger}(f) = ff d\nu^{\dagger}$ and $I^{\dagger}(f) = ff d\nu^{\dagger}$ and $I^{\dagger}(f) = ff d\nu^{\dagger}$

Proof: If f is in C[†], then the definition of I[†] implies I[†](f) \leq ff $d\nu^{\dagger}$. On the other hand, if I[†] defines the measure ν_1 , $\nu_1 \geq \nu^{\dagger}$.

5) Theorem: If I and ν are as above, then $||I|| = |\nu|$ (X) [5, pp. 310 f].

References

- 1. S. K. Berberian, Measure and Integration, MacMillan, New York, 1965.
- 2. E. Hewitt and K. Stromberg, Real and Abstract Analysis, Springer, New York, 1965.
- 3. L. Nachbin, The Haar Integral, Van Nostrand, Princeton, 1965.
- 4. M. A. Naimark, Normed Rings, English Edition, Nordhoff, 1959.
- 5. H. L. Royden, Real Analysis, 2nd Edition, MacMillan, New York, 1968.
- 6. W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1966.
- 7. A. E. Taylor, General Theory of Functions and Integration, Blaisdell, New York, 1965.

[2] is the closest to our approach. [6] is fairly close to our approach but never defines \overline{I} or outer measure. [3] and [4] construct integrals without assuming any measure theory. [1] is more interested in measure than integration. [5] and [7] treat the integral on locally compact spaces as a special case of the abstract Daniell integral, but their approach in the non-positive case resembles ours.