1. A Thought Experiment -- The Toroise and the Hare

‘Consider the two simulation objects whose pseudo code is given
below. Suppose these objects are running on separate nodes under Time
Warp. Since the Hare runs twice as fast as the Tortoise, if each node has
infinite memory, then the Tortoise's LVT (local virtual time) would always
be half of the Hare's LVT. (This assumes there are no other objects and it
takes the same amount of CPU time to run either event section.) How do we
get Time Warp to know that these objects are running at different speeds?
The next two sections attempt to answer that question. Before jumping on,
lets consider this thought experiment in a little more detail.

Obviously this is an artificial simulation and it looks more like two
simulations than one. But it isn't as fake as it looks. The current COMMO*
program eventually divides itself into two groups (Divisions actually) of
non-communicating objects. Also it is quite possible that a simulation
would have groups of objects which do not communicate with each other
for long periods of time. (Indeed, in the fable, the Tortoise and the Hare
were together only at the begining and end of the race.

TORTOISE OBJECT HARE DBJECT'

event section

{

- event section

{

sent a message
to myself at
time now + 1;

}

sent a message
to myself at
time now + 2;

}




On a more practical note, what happens when memory is limited?
Eventually the Hare's node will become filled with messages and states
timestamped in the "twilight zone" between the Hare's LVT and GVT (which.
is roughly equal to the Tortoise's LVT.) The Hare's node is out of memory
and flow control will not free any memory. Hence it must wait unti! the
next GVT calculation for memory to become availible. As a result the
Hare's node is idle for half the CPU time between GVT calculations. (By the
way this experiment shows why GVT shouldn't be called every time a node
runs out of memory. Otherwise the Hare's node would be constantly calling
for GVT.)

Finally we present a variation showing roughly the same type of
problem but with two instances of the same object type: "racer". Note
again that the Hare runs twice as fast as the Tortoise.

RACEROBUECT

event section
{
text = content of the event message;
switch(text){
case "tortoise": use a CPU unit;/* no break™/
case "hare": use another CPU unit;

}

sent text to myself at time now + 1;

}



2. The Virtual Velocity of an object or node.

There are several possible definitions of virtual velocity. However, each
is measured in units of virtual time / real (or CPU) time and is a measure
of the change in virtual time over some window of real time. Also of
interest is virtual service time, the reciprocal of virtual velocity, which
is the amount of real time needed to advance virtual time by one unit.
Since virtual time moves in discrete jumps, but real time is closer to
continuous, the concept of virtual velocity is perhaps only meaningful over
relatively long time periods.

A. Historical Virtual Veloccty

For historical virtual velocity the change in virtual time is the
difference between two GVT's (global virtual time computations) and the
change in real time is the sum of the processor time that was needed to
handle the events in this virtual time window.

NOTE:

(i). If this object or node had no events in this v1rtual time window, then
we are dividing by zero.

(ii). If t1 and t2 are the real times at which GVT1 and GVT2 were
computed, it is possible that none of the events in this virtuai time
window got any CPU time in this real time interval. That is the object or
node had LVT > GVT2 throughout this real time window. (Hence the name
historical.)

(iii). Itis also possible that amount of real time used was greater than
t2 - t1.

(iv). Historical virtual velocity is a measure of how much "useful" work
was done in the past It may not reflect what is going on now in the
simulation.

(v). It is always non-negative.

B. Local Virtual Velocity:

Local virtual velocity can be measured between any two points of real
time. The other difference between historical and local virtual velocity is
the way in which the change in virtual time is measured. For local virtual
velocity we use the change in LVT (local virtual time) rather than GVT.

NOTE:

(i). If this object or node has no waiting messages, the local virtual
velocity could be infinite. :

(ii). A rollback could cause local virtual velocity to be negative.

(iii). Local virtual velocity need not represent the rate of which "useful"
work is being done.



C. Idealized Virtual Velocity:

This abstraction is the idea case, messages arrive at regular intervals
and it always takes the same CPU time to process them. We also assume
that there are no rollbacks, that is we are in a sequential mode. It is
easier to define the virtual service time (the reciprocal of virtual
velocity).

Let's consider a special case first. Object A receives exactly 1 message
every x units of virtual time and it takes exactly y units of real time to
process any 1 message. Then object A's virtual serv1ce time isy/x and
its virtual velocity is x / y. _

Unfortunately, the general case is more Complex If object A has two
input messages at the same virtual time instant, then the amount of real
time needed to process both messages need not be 2*y. Indeed, if object A
was the tortoise of the last section, then amount of real time needed to
process 2 (or any other number) of messages is the same as the amount of
real time needed to process one message. On the other hand, the commo
object in COMMO* must process messages in a pregiven order and hence
has to search the list of incoming messages for the next message to
process. The current commo object takes real time proportional to i**2 to
process i messages that arrive at the same virtual instant. Let's assume
that it always takes y(i) units of real time to process i messages that
arrive at the same virtual instant.

How often do exactly i messages arrive at the same virtual time
instant? Well if we assume that the probability of i messages arriving is
p(i), then the average real time needed the advance an object one unit of
virtual time is the sum of p(i) * y(i) as i runs from 0 to infinity. Obviously,
we are starting to do some analytic queueing theory. However, it seems a
little early to attempt this and we will not consider rdeahzed virtual
velocity further.



3. Measurement of Historical Virtual Velocity

_ The following is perhaps a rather naive method for implementing a
measure of historical virtual service time (the reciprocal of virtual
velocity). Statistics are collected in the "state" structure of the object. A
record field called "real_time" is added to the state structure, which holds
the amount of real time used to get this object thus far. The current field
"aftersave" in the Ocb is used to do a similar measurement in the current
Time Warp code. However, aftersave measures only the time the object's
code is running, whereas real_time should also include the time used in
the object's calls to Time Warp functions like me(), simtime(), etc., since
these are a part of the simulation costs and not Time Warp overhead.

A rough estimate of service time is the difference in the real_time
fields at two different GVT's divided by difference in the GVT's. Of course
the object may not have a saved state at either of the GVT times, thus this
estimate will be better over several GVT periods rather than between
consecutive GVT's. The service time for a node is just the sum of the
service times of the objects on that node. Again this only is a rough
measure for each node since the amount of real time between two GVT's
can be different for diferent nodes.

(If "jump forward" is being used, then the real_time field might be
more easily implemented as a delta time, i.e. since the last saved state,
rather than the absolute time given above.)



4. Time Dialation Objects

It may turn out that Time Warp runs best when all the different
nodes have roughly the same local virtual time at all times. Hence we
would need an object that "wastes" CPU time in the correct amounts. We
call such an object a time dialation object since the faster virtual
velocity is at a node, the more the object must waste CPU time to keep the
simulation time in "tune".

It is likely that historical virtual velocity is the correct virtual
velocity to use in this context. During a GVT calculation a node could sent
its "old" historical service time as well as its current LVT. GVT update
could include the maximal service time as well as the minimal LVT. The
various nodes could slow themselves appropriately.



5. Time-like vs Space-like Messages |

It has been suggested that objects that communicate heavily need to
be on th= same nodes or at least nearby nodes. In general, this is a
reasonable rule of thumb. However, there is another dimension to take into
‘account, that of time. If a message from object A to object B has a large
receive_time - send_time relative to the maximum message delay, then
we would expect that rarely would such a message cause rollback even if
A and B were as far apart as possible on the hypercube. On the otherhand,
object C may rarely sent messages to object D but all these messages have
a receive_time - send_time of zero. Thus, unless C and D are on the same
node (and sometimes if they are), every message could cause a rollback
and will if the nodes are at the same LVT.

A time-like message is one which is unlikely to cause rollback
whereas a space-like message is likely to cause rollback. These are only
rough ideas which we could try to formalize as follows:

Let:

X = receive_time - send_time,

y = delay time to transmit the message (real time),

= the virtual velocity of the receiving node,

and assume both nodes are at the same LVT at the tlme the message is
sent.
Then the message is:

time-like if x>y*z and

space_likeif x<y™z.
This is perhaps too refined and using >> and << in place of > and < in the
above equations will lead to a more interesting classification.



