JET PROPULSION LABORATORY INTEROFFICE MEMORANDUM
SFB: 366-91-5
August 15, 1991

TO: Time Warp Group
FROM: Steve Bellenot

SUBJECT: Sun TWOS 2.5.1 BenchMinus

If you look at the title carefully, you will see that this is not a
benchmark memo. First the application benchmarks were given arbitrary
cutoffs to make their run times faster. (For warpnet we used a cutoff of
250, pucks had a cutoff of 40 and stb88 had a cutoff of 25000.) Also the
Sun TWOS code executed isn't exactly the TWOS 2.5.1 code. This code has a
few additional bug fixes and prints a longer GVT line. However, we believe
its performance is very close to the Sun TWOS 2.5.1 code. Configuration
files were stolen from prior Butterfly benchmarks and not made special for
the Sun. Both Sun and Butterfly run times are with dynamic load
management turned off. All Sun runs were made on the Sun 3/60's which
have 12 megs of memory each. There are only four 3/60's locally available
and we always used all of them in our multiple node runs.

Both the Sun and the Butterfly are 68020 based computers, but have
different compilers. Figure one shows the run times for the sequential
simulator runs from the Butterfly and for two different Sun compilers. It is
possible that the all the difference between the Sun 4.0.3 compiler and the
Sun 4.1.x compiler is that the "-O" option (optimize) now defaults to "-O2"
instead of "-O1." It seems reasonable to infer that all the difference in run
times in Figure one could be compiler differences.

The four node Sun runs were made by a batch file which used the
new "xtw" tool. Xtw starts up an "xterm" as well as Time Warp on each of
the Sun nodes. The combination of the xterm and Time Warp requires
more than the four megs of memory that our Sun 3/50's have. The Sun
Time Warp version was run with 3 megs of memory in the Time Warp
heap. The Butterfly Time Warp version was run with 2.125 megs of
memory in the Time Warp heap. (The Sun version needs a much bigger
stack.) Figure two shows the relative four node performance between the
Butterfly and three different Sun runs. The difference in the Sun runs is




A Comparison of Sequential Run Times in Seconds

600 T (Simulations Cut Off Early — Not the Full Benchmark)
500 A
400 -
B Sun0S4.0.3
300 - E Bfly
Bl Sun0S4.1.x
200 A
100 -
o -

Warpnet Stb8s Pucks

Figure 1. Relative Run Times.



250 1 : . -
> 4 Node Run Times (Seconds) Bfly vs Sun with different object timings
200
150
B wall
Process
100
B None
50
0

Warpnet Stb88s Pucks

Figure 2. Four Node Run Times



how objects are timed. In "Wall", the wall clock time is used to measure
how long objects execute. In "Process”, only the time which the program is
actually executing is measured. And in "None", no object timings are done.
The Butterfly version times objects on a "Wall" basis. The Sun simulator
times objects on a "Process" basis. The old Sun versions use to time objects
on a "None" basis. Roughly there is a 2-3% difference in run time going
from none (fastest) to process and from process to wall (slowest). The
reason for the speed difference is due to the number of system calls
needed. (Butterfly clocks reads do not require system calls.)

Figure three shows the speedups for these four node runs. Note that
the Butterfly always "wins" the speedup race. The timings for the Sun
version were taken from a batch file made in the night on Suns which
were doing nothing else. Figure four shows all the run times of the "Wall"
four node warpnet run versus time of day. The run actually started around
6pm and run to about 4pm the next day. The big gap between Sam and
1lam was due to a run which was stuck. During the day a second run stuck
but was found faster. Note that even at 3am, run times can suddenly jump.
Busy screen savers like "lockscreen” can seriously degrade timings. If one
machine doesn't have enough memory for both the xterm and Time Warp,
then the batch program will hang.

The socket based communication on the Suns is much slower than
the Butterfly communications. We used Ping sending 10000 messages to
estimate communication time. On the Butterfly, the one node run time of
42.6 seconds and two node run time of 42.5 seconds indicates that the
communication time is less than overhead of scheduling (setting the
current object at +inf and rearranging the ready queue.) However, the one
node Sun times of 40.5 seconds (wall), 32.4 seconds (process) and 22.7
seconds (none) is about the same as the Butterfly, but the two node run
time was 1003 seconds (same run time for wall, process and none) over 20
times longer. Thus as a rough estimate it took an average of 100
milliseconds per message (or 10 messages per second) on the Suns.

We think the reason the slowness of the Sun communications isn't a
major factor in our benchmark runs is because these benchmarks are
"saturated" at four nodes. (That is, there is always lots of useful simulation
work to do on each node.) Since all communication between the Suns is on
the same ethernet, increasing the number of Suns will eventually saturate
the ethernet bandwidth, slowing communications further.




3.50 T 4 Node Speedups Bfly vs Sun with different object timings
3.00 A
2.50 4

M Bily
2.00 1 B wall

Process

1.50 +

£ None
1.00 -
0.50 -
0.00 H

Warpnet Stb88 Pucks

Figure 3. Four Node Speedups



Run Time in Seconds

105 -

100 A
95 +

90 +

80+ @ Py e ® e®

75 )
0:00 2:24 4:48 7:12 9:36 12:00 14:24 16:48 19:12 21:36 0:00

—
-t
-
=
-
o
e
-

Figure 4. Variations in Run Time vs Time of Day



