JET PROPULSION LABORATORY INTEROFFICE MEMORANDUM
SFB: 366-90-03
August 15, 1990

To: Time Warp, Integrated Parrallel Techonology and R. Fujimoto
From: Steve Bellenot%

The Rollback Chip Memo

This memo outlines what software is needed to make the
rollback chip hardware from Integrated Parallel Techonology work
with JPL’'s Time Warp Operating System software. The memo sets
out design goals, states the limitations of the initial software and
lists issues which are unclear at this time. It tells which software
modules will need to be added and which will need to be changed. It
also provides a timetable for when this work will be done.

Design Goals

The rollback chip hardware is both a potential commerical
product and a device whose performance data will be of scientific
value. Both of these high level goals imply that the software should
be as non-intrusive as possible towards the existing TWOS software.
It is desired that this software become a premanent part of the
TWOS’s code and hence it should support all of the features of TWOS.
In particular, the initial rollback chip software should support
dynamic allocation of state memory.

Some simple consequences of the non-intrusive policy are
worth a quick mention. Calls to rollback chip routines should be
protected by a boolean variable (like “rbc_present”). (This allows
one to mix rollback chip nodes with non rollback chip nodes on a
single run of time warp.) Next any intrusive rollback chip code (and
perhaps all) should be wrapped between #ifdef RBC and #endif C-
preprocessor commands. Finally, the rollback chip software should
be self-configuring (like figuring out how much memory is on the
board.) '

However TWOS is a living piece of software and there will be a
concurrent development of dynamic load management in TWOS. Thus
dynamic load management is a “moving target’ and it should not be
supported by the initial rollback chip software. Rather the initial
software should be able to co-exist with dynamic load management
on a mutaully exclusive basis. The final decision on supporting
dynamic load management will be made after the integration of the
software and hardware late next spring.

Review of the Rollback Chip

The rollback chip provides transparent read and write access
to an application object's state variables. The rollback chip has
three basic time warp operations. The “mark” operation which
creates a new copy of the state. The “advance” operation which
garbage collects the states no longer needed (i.e. before GVT). The
“rollback” operation which deletes states which have been rolled
over. Additionally there are memory allocation and memory mapping
functions for the memory on the rollback chip.

Memory allocation on the rollback chip is done by use of
segments. A segment can be any size (in 1 K units) up to the total
amount of available memory. There are 256 segments. The functions
mark, advance and rollback all take a segment parameter. An on chip
table tells the rollback chip which area of on chip memory each
segment refers. An application object would have at least one
segment and perhaps all of them.

The policy on how to allocate these segments is not clear at
this time. The code must be flexible enough to test several policies.
For instance obvious parameters include the size of the initial
segment, the size of the second segment, the size of the ... or
perhaps a rule like double the size each time. Note that the perfered
(first, second ...) segment size information could be kept on either a
per object or a per object-type basis. Since the per object
information will have to grow in any case (see below) segment
sizing information will appear on a per object basis. Indeed even the
choice of using the rollback chip to store the state memory will be
done on a per object basis.

Time Warp’s “states”

There are three levels of state code in TWOS. The first layer
performs the basic state control for static state sizes. This level
includes the basic mark, advance, and rollback operations from TWOS
viewpoint. There use to be some “periodic” state saving code in this
layer, but that code is gone. The second layer deals with dynamic
allocation and deallocation of state memory. The size of an object’s
state is allowed to grow and shrink at run-time. Currently there is a
soft limit of at most 100 dynamically allocated pieces of state for
any one object. The TWOS code defers copying a dynamic piece of the
state until the time which it is referenced. The last layer has states
being sent as messages, for dynamic load balancing of the
simulation. This last layer is in flux.

Dual nature of states

States in TWOS preform two functions. The state header is
used by the Time Warp executive to keep track of system
information. The other part of the state, which we will call the
footer, it is the part used by the application to store its variables.
In theory, the Time Warp executive does not need access to the
footer. In practice, Time Warp uses the footer for error checking and
in some optimizations require comparing two footers to see if they
are equal. It is this footer part of the state that the rollback chip is
design to support. The application accesses only the “current”
footer.

On the other hand, the state header is relatively small, has
fields which change in every header (like its virtual time and the
CPU run time) and the executive needs access to all the state
headers not just the current one. For example there are fields in the
header for the virtual time of the state, the amount of run time used
to construct the state, and if there was an error committed while
runing this state.

Both the non-intusive policy and the dual nature of states
suggest that the state headers in TWOS should remain unchanged, but
when run with the rollback chip they will be allocated without their
footer. The footers will be supported by the rollback chip. Note that
for any object there is now effectively only one state footer for all
the state headers. Thus the information about the footer needs to be

kept on only a per object basis. Thus no change is envisioned for the
state header structure, however the ocb (object control block) will
need to be changed to include at least the footer address.
Dynamically allocated state pieces have a small “list header.” This
header is used by TWOS to determine the size of the dynamically
allocated piece of state (in a way which violates data abstraction).
These list headers and the dynamic state pieces will all be stored on
the rollback chip memory.

Allocation Failures:

The are two ways in which an allocation of state memory can
fail. First there may not be enough heap memory to allocate storage
for a new state in TWOS. (Similarly, a rollback chip mark operation
would fail when all its frames are in use.) Second there could be a
failure to allocate a dynamical piece of state memory. In TWOS, the
first failure simply stops TWOS from running objects until
something happens (perhaps the arrivial of a GVT update message
freeing lots of storage). The second allocation failure is more
subtle, and TWOS meerly rolls back the object which failed to
allocate to virtual time now. (At first thought this seems a bit silly,
but either you must rollback or you must store the allocation
request and create a new blocked status.) Both of these failure to
allocate policies are straightforward to implement using the
rollback chip.

Effected Time Warp modules

Several existing TWOS modules will be effected. Rollback.c
needs to be changed for the “rollback” operation. Similarly,
storage.c will be changed for the “advance” operation. The major
changes will be in state.c, for the “mark” operation and for both the
static and the dynamic allocation of state memory. Perhaps save.c
will need changing. The largest TWOS module dealing with states is
migr.c which contains dynamic load management code. This is the
code-in-flux module being ignored until next spring. (Also the
startup code is effected, see ‘“Integration with Mach” below.)

The only TWOS data structure which will change is the ocb
(object control block) in twsys.h. The additional fields required
include a footer address, one (several?) segment number(s), some

segment size information and perhaps a count of the number of
active frames.

Software Emulator

IPT (or perhaps Richard Fujimoto) will write a software
emulator for the rollback chip. This emulator will be used to test
the correctness of the rollback chip software before the rollback
chip hardware is available. The emulator may serve a second
function if the rollback chip is integrated with the GP1000 through
“the switch” rather than “on node.” Performance of TWOS using the
emulator (in place of the rollback chip) provided with its own “off-
node” memory will provide a baseline for the cost of using “the
switch.”

Layers of software

Besides the emulator above, there are three other pieces of
software that need to be written. Low level software drivers need to
be written, in say “rbc_driver.c,” whose routines will provide the
direct interface with the rollback chip. An TWOS executive level
software module, in say “rbc_op.c,” whose routines will provide the
Time Warp level mark, advance, rollback and segment allocation. The
last piece of software is the modification of the existing TWOS code
to use the rollback chip. Clearly lots of debuging code will also find
a way to appear.

For example, we will follow the thread of the “rollback”
operation using the rollback chip. Currently the roliback function is
in the TWOS module rollback.c half in the function “rollback” (where
sometimes a current state is destroyed) and the “cancel_states”
function (where rolled over states in the state queue are destroyed).
(The active state in TWOS is not on the state queue.) The per object
decision to use the rollback chip requires either a function, a flag or
some macro to determine this choice for a given object. Below we
use the boolean function rbc_present (ocbToCheck) which returns
true if the ocbToCheck is using the rollback chip to store its state
footer.

The rollback.c module needs to keep a count of how many
states to roll over, say numToRollOver, and make a function call like:

if (rbc present (ocbToRollOver))
rollback op (ocbToRollOver, numIcRollOver);

in addition to TWOS usual destruction of state headers. Error
checking in this case will be done on a lower level.

The rbc_op.c module needs to implement the funtion called
above. Using pseudo-code the function rollback_op could be
implemented like:

rollback op (ocbPointer, countToRollBack)
Ocb * ocbPointer;
int countToRollBack;

{
for each segment s of ocbPointer

{
if (roc rollback (s, countToRollBack) == error)

print-error-and-enter-debug-mode;

}

Note the error checking is done on a per segment basis.

The driver level module function rbc_rollback would look
somelike like:

rbc rollback (%, v)
int %, y; '
{

contol register type * p;

p = rbc control register address;

p—>rollback offset = (x << 24) + (v & 0x3f);

return (p—>read status offset & rollback mask);
}

(See the IPT RBC (Rollback Chip) specification for details.) Both the
rollback chip hardware and the emulator will be able to accept these
reads and writes.

Integration with the Mach version

Since there will be eight rollback chips to test and over eighty
nodes on the JPL Butterfly, there need to be ways to assign
timewarp node numbers to physical butterfly node numbers at run
time. To make sure rollback chip nodes are available when requested,
there needs to be a way to allocate nodes without rollback chips
first when the roliback chips are not requested. Thus requesting
some rollback chip nodes needs to be a command line option (a config
file option would be too late to acquire the nodes). Since timing runs
on large number of nodes would require running on nodes with a
rollback chip installed, turning on the use of the rollback chip needs
to be a config file option. (The default option would be to not use the
rollback chip.)

Mach on the butterfly has a call “cluster_create_phys” which
will create a cluster from a node list of physical node numbers.
Butterfly Mach also allows one to create a cluster of nodes with
properties like the free cluster. It seems reasonable that a workable
Time Warp startup can be constructed as required above, but we have
not yet attempted it. The Time Warp low level module BF_MACHrun.c
contains the code effected.

Timetable

The first thing on the timetable is this memo which should
have been done a week or two ago. The most curent version of TWOS
(2.4 (2.4.17)) will travel back with me to FSU. A definition of the
driver interface will be done by me for IPT by October 1. Somewhere
in the October - November time frame a rollback chip emulator will
be delivered to me. By late January, the rollback software will be
running on a Sun3 with the emulator, and this code will be available
to merge with version 2.5 of TWOS. (This code should allow TWOS to
use the emulator on Mach.) Spring brings the integration of the
software with the hardware, a chore of uncertain duration. (At this
point it is unclear what machine the integration will take place on.)
With luck next summer will see performance measurements and
dynamic load management support.

Test applications

To show off the rollback chip at its best, applications with
high state-saving overhead are required. The optimal test
application should have both a large state size and very short
execution times for each event. (Hence only a few of the state
variables change with each event.) Here are four increasingly
realistic applications that should meet these goals. It is unclear
which will be implemented at this time.

1. Random stores in an interleaved memory:

There are 8 banks of memory each modeled as an object with
state size large enough to hold all of the memory values. Each of the
“banks” schedule one random store event for the future for each
store event received. The banks have static state size.

2. Dictionary:

The abstract data type dictionary providing lookup(key) and
store(key, key_value). The dictionary could grow to unlimited(?)
size. The dictionary would be distributed over a (fixed?) number (87)
of subdictionary objects. For more realism, a PostScript dictionary
or the “dictionary” of Lisp Atoms could be modeled. The states of
the dictionary objects would grow but not shrink. It is not clear
what the best way would be to model the sequence of “lookup’s” and
“store’s”, the simple way is to have the dictionaries generate
events similar to the way the banks do in the “random store” above.

3. Inventory:

The last one has a state size which can shrink as well as grow.
The inventory is a collection of (part-number, number-on-hand).
When the number-on-hand reaches zero the part-number is deleted.
Obviously we could have objects like producers and consumers also.
Another way to obtain deletions, which might be easier, is to time
stamp the parts and delete those which are too “old”.

4. Terrain Data Base:
Others could define this better than I.

