JET PROPULSION LABORATORY INTEROFFICE MEMORANDUM
SFB: 366-90-01
August 7, 1990

To: Time Warp Fans
From: Steve Bellenot
Re: Mach and Time Warp

Althought Time Warp 2.4 supports the BBN Butterfly GP1000
running Mach, there are a number of ways which this Mach support can be
improved. Some of these improvements are currently available in the files
BF_MACH_Hg2.c and BF_MACHrun2.c, other improvements would require
implementation and finally there is the paging problem which has not
been solved under Mach.

1. BF_MACHTrun.c variables:

The Mach version of Time Warp incorporated the “run program” into
the Time Warp executable. Before Mach, a separate run program was used
to start up Time Warp on the other nodes and to collect certain data
messages from the simulation, for examples msglog, qlog, flowlog and
is_log. By linking the run program with Time Warp, every Time Warp node
got a copy of the variables in BF_MACHTrun.c, even though the Time Warp
nodes have no use for these variables. When the run program was running
on its own node, it had lots of available memory and hence the data space
for the run program had grown to a huge size. By replacing a large array
variable requiring B bytes for storage with pointer and then mallocing the
needed array removes B - 4 bytes from the data space, (4 bytes are
needed for the pointer).

After adding this change to BF_MACHrun.c, the data segment of Time
Warp was reduced by 32 pages which is a quarter of a megabyte per node.
(Let's see ... we have 84 nodes, so that is 21 MB total, and at the going rates
a MB is about $100, so we found about two thousand dollars.) Memory is
very dear under Mach. The main Time Warp heap is 2.75 MB in the
Chrysalis 2.4 version and this heap was 1.75 MB for the 2.4 benchmark of
the Mach version. (We think we know where another 0.5 MB went under
Mach. Unix has a constant called LOTSFREE. If there is LOTSFREE amount of
free memory, then the pager is not run under Unix. Mach also has this
constant LOTSFREE which is set to 0.5 MB. We think Mach works like Unix
in this case.)

Two additional improvements were made while implementing
“malloced run program variables”. First an addition 5 pages of data space

was removed from pucks. The circles package had large arrays used for
testing circles which was not used for pucks. (The data segment for pucks
went from 50 pages to 13 pages with all these improvements.) Second
bugs in the way the run program collected the data were discovered. A
data collection with zero items of data would crash the program (and this
happened after the simulation part of the run had been completed.) One of
the loging collection was found to hang. These bugs were fixed.

These improvements can be added to Time Warp 2.4.1 without those
listed in 2 below.

2. The Uniform System:

The Mach version of Time Warp 2.4 uses the Uniform System. The
Uniform System is a collection of routines which are available under both
Chrysalis and Mach. In either case, there is a library of routines which in
turn will call the native operating system on your programs behalf. Since
the Chrysalis version of Time Warp does not used the Uniform System, and
the Mach version cannot run under Chrysalis, we do not gain any
portability by using the Uniform System. There are some advantages to
removing the Uniform System from Time Warp. There are modest
improvements in time and space, but the main improvement is the
simplifiction of removing a software layer.

In the Mach version of 2.4, there are five different node numberings.
Time Warp node N is on Uniform System node N + 1 is on Cluster Logical
node N + 1 is on some Mach Logical node M which is some Physical node P.
(Making the Uniform System nodes match the Cluster Logical nodes was a
last minute addition to 2.4.) In removing the Uniform System, Time Warp
node N now is Cluster Logical node N. (Also the XL_STATS file now contains
a list of which Mach Logical and which Physical node each Time Warp node
was running on.) This simplifies the send and receive routines, the node
numbers are no longer one off.

The Uniform System on Mach isn’t designed for Time Warp. It forks
processes to all the nodes before Time Warp can allocate its shared
variables (queues and message buffers), hence all the calls to “Share” to
update these variables. Without the Uniform System the shared areas are
allocated before the fork so that each process automatically gets the
correct data at fork time. (The fork command creates a new process with
an identical data segment.) The Uniform System also manages to
sometimes kill the parent process before its children have exited. This isn’t
an error so much it is an annoyance, when a parentless process exits an
error line is printed to the screen. A 60 node run would sometimes get 60
identical error messages, scrolling the screen pass information you might
want to see. This is fixed in BF_MACHrun2.c

2

The removal of the Uniform System required adding some delay
fuctions. The routine wait_a_millisecond() has advantages over the
UsWait() which makes calls to getrtc(). Since wait_a_millisecond() just
decrements a register, the CPU is not making any memory references once
the instruction loop is cached. Calls to getrtc() go over the switch,
increasing switch traffic. The other delay function is in lock() and is timed
to be about 40 micro-seconds.

Two additional improvements were made while implementing these
delay functions. First two “divisions” were replaced with “compares“ from
the enqueue and dequeue routines, speeding up the time between the lock
and unlock calls. Second, since only one process dequeues from any
particular queue, dequeuing doesn’t need to done with locks, dequeuing
can go on in parallel with enqueuing.

Other improvements in BF_MACH_Hg2.c include better feedback
when initializing Time Warp. While creating processes (and exiting
processes) a period is printed as each process is started (ended). Time
Warp 2.4 claims to get the number of message buffers off the command
line, however this didn't work and the number of message buffers was
always 64. This is fixed in BF_MACHrun2.c and BF_MACH_Hg2.c which
allows the user to set the number of buffers between 16 and 64. Also code
to prevent max_acks from getting larger than the number of buffers
needed to be added. BF_MACH_Hg2.c is set up so that it is easy to wire
down the message buffers, unfortunately this currently causes the
butterfly to crash when it is releasing these wired pages.

By not including the Uniform System code, the size ‘of the text
segment (code) is reduced by about 18 KB which is a couple of pages. For a
60 node pucks run with 2.0 MB of memory the run times averaged 2% to
3% faster (3 to 4 seconds) using BF_MACHrun2.c and BF_MACH_Hg2.c over
ones that used the Uniform System. BF_MACHrun2.c includes the fixes in 1
above.

Both BF_MACHrun2.c and BF_MACH_Hg2.c are ready to be merged
into Time Warp 2.4.1.

3. Mach Threads:

The file BF_MACH_Hg.c get its name by making the Mach send and
receive routines look like the Mercury send and receive routines to the
software above it. BFE_MACH_Hg.c actually uses Mach to act like Chrysalis
did in BBN_Hg.c (now BF_PLUS_Hg.c) by implementing “DualQueues”. It
seems possible to use Mach’s send and receive primitives to directly
implement the Mercury routines. Moreover, it seems reasonable to use
Mach threads to obtain an interrupt routine for arriving messages.
Unfortunately, the Butterfly’s Mach isn’t that kind of Mach. All of these

routines are missing. Mach is not Unix and the Butterfly Mach isn’t even
Mach.

4. Page Faults:

The page fault problem has not been solved. The enclosed graph
(from the 2.4 benchmark memo) shows pages faults per node versus
number of nodes. The average page faults points is slightly above the line
faults = 20 * nodes. Futhermore these page faults cause more harm to the
higher number of nodes case. (Shorter run times make initial faults easier
to see.) Graphs of message logs (using mplot) show this slow start for
messages. Interestingly enough these slow times are also true for gvt
messages, and these are the second round of gvt messages. (There is some
evidence that having too many message buffers is what is causing gvt
messages to be slow. The min_messages routine must touch each message
buffer, and most of them have not been touched since the last gvt.)

A number of experiments have been devised to find out where and
why we are page faulting so much. One test lead to the discovery of the
quarter Meg in the run program. Three others crash the butterfly on a
regular basis. Other tests, which work on Unix, seem not to work for Mach.
Although Mach has many of the same kernel variables as Unix, it seems to
use them differently.

©OQ 9 T

w " cCcom

180~

160

140~

120~

100~

80+

60+

40-

20 -

Pucks Average and Max Fault Curve

®* mx:mpagfs

© am:apagfs

10 20 30 40 50 60 70 80
Nodes

TW 2.4 Benchmark/Pucks Page Faults/4 runs per point/Butterfly (MACH)/EB/7-11-90

