JET PROPULSION LABORATORY INTEROFFICE MEMORANDUM
SFB: 363-89-006
23 August 1989

TO: Time Warp Folks
FROM: Steven Bellenot & Phillip Hontalas

Pucks 2.0

Pucks underwent a transformation. By using the new extended
virtual time, Pucks is able to correctly handle multiple collisions at the
same simulation time and it no longer sends messages for now (i.e. send
time equals receive time). This transformation also removed the last of the
“twang” macro's (no more "AAjunkjunkjunkjunkjunkjunkj ..." in the config
files, no more “IVAR” or “MARG”) and all other macro's. Also a number of
logic preserving transformations was done to Pucks. The new Pucks has
about a third less code and sequentially executes about a third faster than
the old Pucks. Hence the average time per event has also dropped by a
third. Pucks uses all the fields of the new extended virtual time. Because of
the new virtual time the statistics are slightly different. (New Pucks:
414581 committed event messages, 370158 committed events; old Pucks:
412915 committed event messages, 366144 committed events.)

When Collisions Happen

The way in which the new Pucks handles multiple collisions at the
same simulation time (a double in the new extended virtual time) is to
have the collisions happen at different sequence times (sequencel and
sequence2 are unsigned longs in the new extended virtual time). Each kind
of collision has its unique sequence2 time. Different collisions are at least
10 sequence2 units away so that the effects of one collision are known
before the next collision is started.

Multiple collisions can happen at the same simulation time, but in
order to do correct physics, Pucks serializes these collisions. For example,
suppose puck A is going to hit both puck B and puck C at simulation time
10.0. Both B and C schedule a collision event with puck A at time 10.0, but
they will have different sequence2 times for the collisions. Lets say puck B
has time 10.0, 0, 1000 and puck C has time 10.0, 0, 1010. At time 10.0, O,
1000 pucks A and B collide. By 10.0, 0, 1001, the sectors which A and B
are in know about the new velocities which A and B have after the

collision. The sectors send this new information to everyone nearby at time
10.0, 0, 1002. Hence puck C receives this information well before his
planned collision at time 10.0, 0, 1010 which he cancels. If with the new
velocity, puck A (or puck B) will collide with C at 10.0, then C will schedule
that collision at time 10.0, 1, 1010 (or with a different sequence2 time for
puck B), increasing the sequencel time.

The sequence2 time for a collision is unique to each pair of pucks.
Sometimes (but not often) both pucks will schedule the same collision at
the same time. In this case the sequence2 time for the two collisions are
different. If puckWXYZ schedules a collision with puckABCD, then its
sequence2 time will be WXYZ * 100000 + ABCD * 10 + 10000. On the other
hand, if puckABCD schedules the collision it will happen at sequence2 time
ABCD * 100000 + WXYZ * 10 + 10000. Note that the new Pucks requires
pucks to be named “puckXXXX” where the X’s must be decimal numbers,
this is a new restriction for Pucks 2.0. Like old Pucks, cushions must be
named “cushion_X_XX” and sectors must be named “sector_XX_XX”.
Collision times with cushion_X_YZ happen at sequence2 time XYZ * 10 + 10.
Sector crossing times are either at sequence2 time O or the next sequence2
time.

Multiple Collision Example

Figure 1 shows the result of an eleven ball collision in the new Pucks.
Figure 1A shows the starting position with the nine stationary pucks
arranged in a touching square, and two touching pucks incoming at three
o’clock, their arrows showing their initial velocity. Figure 1B shows the 11
pucks at time 0.178038 just before the collision. Figures C - N show the
collision pairs as the new Pucks does them, all at simulation time
0.178038. Figures 0, P and Q show the net collision and how the pucks
spread after the total collision.

Sequencel = 0: At A all the pucks schedule collusions with either
puck 9 or puck 10 or both. Pucks 6, 7 and 8 schedule this collusion at time
0.178038. Because of the ordering, puck 6 collides first with puck 9 (C).
Next in line was puck 7's collision with puck 9 which gets cancelled. So
puck 7 instead collides with puck 10 at 0.178038 (D). Thus both pucks 9
and 10 have new velocities so all other collisions are cancelled.

Sequencel = 1: At D we start a new round of collisions with
sequencel incremented. The ordering of collisions has puck 3 colliding
with puck 6 (E). Then puck 4 collides with puck 7 (F). Puck 9 scheduled a
collision with puck 7, but it gets cancelled because 4 is lower than 9.

However, puck 8 does collide with puck 10 (G). We are still at simulation
time 0.178038, and all the moving pucks but 9 have new velocities.

Sequencel = 2. At G we again increment the sequencel time to
obtain the next collection of collisions. The ordering of collisions has puck 0
colliding with puck 3 (H). Followed by puck 1 colliding with puck 4 (I).
Next puck 5 collides with puck 8 (J). And finally pucks 7 and 9 collide (J).
We are still at simulation time 0.178038.

Sequencel = 3. The last round of collisions are puck 2 with puck 5
(M) and puck 4 with puck 7 (N). Both N and O show the final velocities for
all the pucks.

Since the start up is symmetric, one might expect the result to be
also symmetric. However, as Pucks is currently done, at Figure 1B, pucks 6
and 8 (or even pucks 9 and 10) do not know that they are part of a
multiple collision together. The other strange illusion is of very rigid pucks,
for example that the collision between pucks 4 and 7 happen before the
collision between pucks 7 and 9. However “real” pucks could never be
packed so tight nor could their radii all be exactly the same. However, new
Pucks does conserve momentum.

Other Transformations

The main loops of the sector, cushion and puck types were cut up
into functions. The twang “TELL” macro, message selector field and
standard_arguments stuff were replaced by the equivalent user interface
stuff for TWOS 2.0. We expect that much of the increase in speed is due to
not doing the additional clears and strcpys in the old TELL macro. Several
instances of repeated code were replaced by single functions. The number
of different message structures were reduced as were the size of the
messages and the state. (The state size actually grew (see below) due to
virtual time going from 4 to 16 bytes.) Some dead code was identified and
deleted. A number of identifier names were shorten, for examples,
“array_of_cancelled_indices” became “cannedMsgs” and the constant
“EXAMINE_NEW_TRAJECTORY” became “NEW_TRAJECTORY”. All the old
style dot-h files for each object were deleted and the other include files
were combined into one “pucktypes.h”. (See file changes below.)

Pucks 2.0 uses a new config file format and there is a new “cfgen”
(Jusr/local/src/applications_2.1/pucks/cfgen2.1/cg) program for making
these files. However the new Pucks can still read old Pucks config files.

By switching simulation time from an integer to a double, the new
Pucks no longer scales virtual time. Thus simulations of much longer
periods can be run. For example, the old Pucks benchmark ran to time
400,000,000 because it scaled by a million, while the new Pucks ran to
time 400.0. Using floats for time and having multiple collisions at the same
requires events which happened in the near past be consider as happening
at now. (This is round-off error.) Currently an event must happen by at
least TIME_FUDGE * now to be considered to be happening at now.
TIME_FUDGE is 0.999999999. (And “eight 9’s” isn’t close enough to one for
at least one config file.)

Performance Data

The new Pucks runs faster than the old pucks. Unfortunately the
sequential run time dropped by a third while the Time Warp runs didn’t
improve by that much. The best speedup dropped by about a fifth from
about 16 to about 13. This is consistent with much of the speed gain being
from removing the old TELL macro’s (the granularity went down). The
benchmark runs were done with rcvq (maxnegacks) = 1, 10 and 30. The
default was rcvq=10 with TW 2.1, but it had been rcvg=1 for the old Pucks
TW 2.1 benchmark. However there wasn’t much difference in the run
times for these different rcvq’s. (For large number of nodes rcvg=30 is
faster. And rcvq=1 had troubles with both 6 and 8 nodes.) We have
included the graphs for the rcvq=10 case, the stats files for all three cases
and a comparison table for the different speedups.

Changing maxacks would likely have a larger effect on the run time.
We didn’t test this conjecture as maxacks works different in TW 2.1 than
in either the published runs based on Test_2.1 nor as in TW 2.2 (the latter
two work the same way). The memo's SFB: 363-89-005 and SFB:363-89-
004 tested a version of Pucks different from both the old Pucks and the
new Pucks, but it was closer to the old Pucks. However, the new Pucks
seems to be “lazy” like the old Pucks (see graph below which was done
using “test_2.1” not TW 2.1).

The striking difference between the old Pucks TW 2.1 benchmark
and the new Pucks TW 2.1 benchmark is at the small number of nodes.
The new Pucks is a third slower at 3 nodes and sends three times the
reverse messages. The new Pucks sends hundreds of reverse messages up
to 28 nodes while the old Pucks stopped sending any reverse messages at
12 nodes. This all may be due to the new VTime, a large number of fields
in the state are VTime’s in the new pucks and were doubles or integers in
the old Pucks. A larger state makes memory more dear. (State sizes in

bytes on a Sun3: puck 3700 old, 4576 new; sector 5852 old, 6916 new;
cushion 3272 old, 4136 new. Pucks could take advantage of TWOS’s
dynamic memory to greatly reduce the size of its states.)

File Changes:

0ld Pucks
Lines Words Bytes
2 0 2 oldpucks/p_debug.h
8 17 140 oldpucks/puck.h
8 17 160 oldpucks/sector.h
8 17 168 oldpucks/cushion.h
13 39 347 oldpucks/puck.b
19 35 396 oldpucks/formats.h
37 204 1373 oldpucks/pucktab.c
55 123 933 oldpucks/critsim.c
147 511 4030 oldpucks/twc.h
159 431 3113 oldpucks/pucktypes.h
347 614 5724 oldpucks/p_debug_beh.c
522 1303 11647 oldpucks/cushion_beh.c
1633 4848 43218 oldpucks/sector_beh.c
1813 5276 48423 oldpucks/puck_beh.c
4771 13435 119674 total
New Pucks
Lines Words Bytes
35 204 1372 newpucks/pucktab.c
53 123 936 newpucks/critsim.c
134 365 2754 newpucks/pucktypes.h
242 604 4612 newpucks/p_debug.c
366 1117 8364 newpucks/cushion.c
1196 3603 29117 newpucks/puck.c
1238 3980 30217 newpucks/sector.c
3264 9996 77372 total

Figure 1. New Pucks and multiple collisions
at the same simulation time. A is the starting
position. B-N go through the collisions pair by
pair. 0, P and Q show the pack spreading out
after the collisions.

TW2.1 Pucks 2.0 Speedup as

a function of revg

Nodes revg=1 revg=10 rcvg=30

3 0.55 0.52 0.54
4 1.01 1.02 1.04
6 1.76 1.75 1.76
8 2.42 2.43 2.43
12 3.68 3.71 3.69
16 4,84 4.86 4.86
20 5.83 5.85 5.85
24 6.71 6.76 6.74
28 7.41 7.49 7.44
32 8.15 8.16 8.16
36 9.02 9.02 9.02
40 9.58 9.54 9.58
45 10.07 10.08 10.07
50 10.92 11.10 11.16
55 11.59 11.73 11.73
60 12.15 12.16 12.14
65 12.41 12.66 12.66
70 12.17 12.32 12.84
75 12.31 12.70 12.94

Pucks Timing Curve

3500 Sequential Simulator Time 1673.57 seconds
3000
2500
2000
1500

1000

w300 0O

500

0 10 20 30 40 50 60 70 80
Nodes

TW 2.1/Pucks 2.0 (rcvg=10)/4 runs per point/Butterfly (Chrysalis)/sfb 16 August 1989

Pucks Speedup Curve

14.00

12.00

10.00

8.00

6.00

4.00

T Q0O ®T W

2.00

0.00
0 10 20 30 40 50 60 70 80

Nodes

TW 2.1/Pucks 2.0 (rcvg=10)/4 runs per point/Butterfly (Chrysalis)/sfb 16 August 1989

Pucks ERBOs Curve

450000
400000
350000
300000
250000
200000
150000
100000
50000
0

»nowxxm

0 10 20 30 40 50 60 70 80
Nodes

TW 2.1/Pucks 2.0 (rcvg=10)/4 runs per point/Butterfly (Chrysalis)/sfb 16 August 1989

w o 5 000w

Pucks 2.0 execution times in seconds
lazy vs aggressive cancellation
aggressive tuned ma=1 rcvg=100

aggressive

] 1azy

4001
3501
3001
2501
200 1
1501
100+

283
245

35 40
Number of Nodes

New Pucks

A | B 1 c 1 D | E | F 1 G I H | i | J K L M N [5) P Q
Pucks 2.0 (rcvg=10) data for TW 2.1 mm:o:_.:m}k runs per
nodes amtime | am:cevents _{am:ecancel amnssave amnscom amnsequal _ lam:tells am:eposrs |
3 4 umoub‘* 1 453415.5 70158 7750.3] 400453 7015 53266. 5370375112176, m
4 4 1643.87] 1 437483.8 qo_mmﬂ 10909.8] 408985. 7015 2880 703915.8 53896
4 954.63 460057.8] 1 447387. 70158 15437.8] 424445 7015 23246, 6306325 30039
4 667.69 453282, 524. 453282, 1 460699, 4395965 7015 21407. 612775 1817
12| 4 451.3 448469 7803. 448469 1] 497331, 478945, 460729, 7015 18520 598086 6084.3|
1 6} 4 344.71] 449300.5 32956] 449300.50 1| 5181125 496217 477817 70158 18703.8] _ 606698.8 1763
20 4 286.09] 455207.3] 39930.5| 4552079 1 542331 515964 495914 70158 20354] 628499.8 695
10 24 4 247.45 460696 45964.3) 460696] 1 569170.8] 538036.8 515859.8] 370158 22481 653411.3 150
11 28 4 223,41 4689223 54105 4689223 1 597736 _561800.5 537282 370158 24822.5 683277 236.3
1 32 4 05.1] 474411 53809 474411.3 i 623206.8) 582771.8 554966.8] 7015 28109] 705464.3 21.93)
36 4 185.57| 477956, 63374.3] 477956.9) 1 635244] 5905968 701 63374.3] 563089 7015 um:.mT 713787. 1
40] 4 175.37] 486615. 72033, 486615. 1| 665310. 615790 701 72033.5] 585634.8 7015 0459.3 74531 1
4 5| 4 166.08 498542, 8394 498542, 1 703136 646716| 015 83948] 613331.5 7015 mmmm‘m_ 781212.3] 13.
50 4 150.8] 501996. 87415. 501996. 1] 715584, 655589 70158] 87415.3 622376 7015 33517 795788] 0
5 5] 4 14264 508498 33914.5] 508498.5 1| 743395 676596] 70158] 93914.5| 640225.5 7015 36674.5] 812007. 3
60 4 137.67] 518996, 104415.3[518996 104415.3 414581 778959.5 705677, 70158] 104415.3] 666010.3 7015 39970.8 84417 0
1 65 4 132.24] 531573, 116980] 531573, 116980} 414581 814841.8] 734249.8] 70158 116980] 692540} 7015 42013.8] 878535, 12.3
[70 4 135.85] 557560 557560, 2»?:& 414581] 877785.3] 788433.5 70158 744819 3] 370158 43918.3] 953759.5 aﬂﬂ
1 78] 4 131.74| 570295 5| mqomwme 155714.5 414581] 9115175 816728 70158 _155714.5] 771763 370158 45269 0
2
3 {Duplicate data for timing curve Duplicate data Seq. Simn. Time Calculated data for ERBO’s curve
4 | Nodes Seconds Nodes Speadup 1673.57, Nodes ERBO'S
3 3203.0 3 0.5 3 832575
4 1643.8 4 1.0 4 7325.8]
6 954.6 [7 7229 .5
8 687.6 [4 05418
2 451, 71 1 108787.3
6 344.7 4.86] 16 126059
0 286.0 5.85 20 145806
32 4 247.485] 6.76) 4] 167878 8
33 28 223.41 7.49) 8] 191642 5
34 32 205.1 8.16 2] 212613.8
36 185,57 9.0 6| 220438 8
4 0] 175.37] 9.54 40 45632
4 5] 166.08 10.08 45 76558
50 150.8] 11.10 50| 85431
El 142.64) 11.73 mm_ 438]
0 137,67 12.16] [519
5 132.24) 12.66] 5[364091.8
0 135.89 12.32 7 418275.5
E 1 :n.* 12.70 75] 446570

R S T U w X | Y Z AA AB
i
|2 jameneqrs am:eposrr am:eneqgrr am:numer am:comet am:comds amicprobes _ fam:chits am:cmisses |
[+] 1121268 '] 0]] 0] 1071961.5] 1064376 7585,
0 53896.5 9 9 o 0 9 02280.5 898134.8 4145,
[30039 0 0 0 L] 0 7628.5 85461 3013.
] 18177 0) 0 (] 0 18655 828842.5 302
0 6084.3] 0 2] 0 0 0 7768.5 824217.8 3550.
[1763.5 1] 9 0 Q (] 835000 306443 4355.8
B 0 695.8 9 1) 0 o 0} 52098 .3 52163
10 0 150.8 0 o 0] 1] 72661.8 6113.8
1 [+] 236, o 0 0] (1] 8994525 6834.5
1 0 21, "] 0 0] 0 925613| 91781 7794
1] 1 0 9 2] [+] 0 942291.5 933917, 8374.
14 [1 0 0 0] (] 969110 960035, 9074,
1 [¢] 13.8 0] 0 0 "] ::oooa.mw_ooommm. 10045,
1 0 0 0 9 0 0 0 102346 101309 1036
1] 3 (] 0 0 4 0f 1043802.5] 1032420 11381.
1 0 0 o (1) (*]] O] 1079273.5(1066811. 12461,
A 0 12.3 [\ [] (] 0 [1122974] 1109670. 13303.
0 o 137.8 [] (1] (] o] 1207706 _1194422.8 13283,
1 0]] [(] (] 0f 12465185 1233148.3 13370,
2
4
3
31
32
33
34
7
4
41
4
4

A | B | [*] | D | E F 1 G | H |] | J K L M N [<] P a
Pucks 2.0 (rcvg=30) data for TW 2.1 Benchmark/d runs per point/Butterfly (Chrysalis)/t
nodes ctitime amiime am:s, am:epos'r] ammnecol amcevents _ lam:ecancel amnssave amnscom amnsequal __|am:teils am:eposrs
3 4 3084.66! 515194 7351.5 515194 7351.5) 414581 487810 443547, 70158 7351.5 39693 7015 46919.3 875821.5 93261
A 4 4 1613.63 473533 10678.5i 473533, 10678.5) 414581 460947, 431537, 70158 10678.5i 40706 7018 24779.8 687143.3] 4827
S 6 4 949.1 458273 15627 45827 15627, 414581 466364, 445956, 70158, 15627 424220, 701 22039.5) 28069
8 4 687.81 20464 452974, 20484 414581 47781 459851, 70158 20464 439318, 701 20837 17928.
12 4 53.49 27924.3] 449125.5 27924 3] 414581 498046, 479261. 70158 27924.3 461016, 701 18549 6620.3]
4 344.63 33093.8 449187.8) 33093 8 414581 518012, 496190.8 70158 33093.8] 477898.5 370158 18596.3 1513
9 4 286.04) 39801 455059 39801 414581 541891, 515583, 3] 70158, 39801 495590.3) 370158 20297] 677]
10 4 mbm;M’ 45576.8) 460259 45576 8] 414581 568591 537611.5 70158 45576.8 515546 5 370158 22369 101.3
1 4 225.08 54281.5 469178.3 54281.5 414581 597944.5 5620785 370158 54281.5] 537593, 370158 4788.8) 315.8
1 4 205.04 5986 47444 59869, 414581 623375 H 582770.5 70158 59860 554997, 70158 8077.3 705519.3 8
1 4 185.51 6390 478484, 6390 414581 £635685.3] 590996.5 70158, 6390 563334, 7015 7965.8! 714585 0.8
14 4 174.69 71552, 486133, 71552. 414581 664021 614534 70158 71582, 58441 7015 30419 744078, *]
1 4 166.25 4029. 655.5] 84029, 414581 703277, 646699 70158 4029, 613287, 7015 33715. 781850, 45.3
1 4 149.98 6640 01221.3 86640.3) 414581 714047, 654390, 0158 6640. 621204, 7015 33490, 793607.5] 0
1 4 142.62 508484.5 93903.5 08484.5 $3903.5i A14581 742591, 676140. 70158 3903.5) 639772, 7015 3667 811388.3] o
60 4 1 .me._ 519443.5 104862.5 18443.5 104862.5 414581 77946 706064, 70158] 104862.5 666414 7015 39954.3) 845034 0
8 5i 4 132,18 529948 5 115306.8 529948.5] 115306.8 414581 810158. 730019. 70158 115306.8] 6887965 7016 41527 873568.5 60.8)
79 4 130.33] 546402 .8] 131774.8 546402.8 131774.8 414581 844844, 7594598 70158 131774.8] 718436.3 70158 41327.5 918745 3] 47
1 ﬂm..* 4 129.36 56419 .u_ 149608 3 564192.3 149608.3 414581 892945.3 799943 370158 149608.3 756249 370158 43998 975064 3
2
3 |Ouplicate data for timing curve Duplicate data for speed curve; Seq. Sim. Time Calculated data for ERBO's curve
4 | Nodes Seconds Nodes Specedup 1673.57) Nodes ERBO's
3 3084.66| 3 0.54 3 73389,
4 1613.63; 4 1.04 4 61379,
6 48.1 -78 [75798,
8 687.8 .43 8 89693,
1 453.4 12 .69 2[109103,
1 44.6 16 4.86 5 126032,
20 86,04 29 5.85 20| 145425,
3 24 248.15| 24 6.74] 24 167453,
33 2 225.06] 28] 7.44] 28 1919205
34 32 205.04] 32 8.16; 2 212612.5]
36 185.51 38 9.02 36| 220838.5]
40l 174.69 40 9.58 40 2443786
7 45 166.25 4 5] 10.07] 45 27654
50 149. mw 50 1116 84232,
5 142.62) mm_\ 11.73 5 05982,
4 9 7.8 -14] o] 35906,
L [E 132.18§ ﬂ .66 68| 59861,
4 70 130.33 7 0] .84 70l 89301,
4 e 129.36 75| .94 750 42978

s T 1] X Y Z AA AB
| 2 jam:e am:epostr am:enearr am:numer am:comds am:cprobes
0 93261.5 0 [[o 0| 1006389.5
4 0 48274 [0) 0 3
[2806 [[0) 0
0 17929, © [o 0 0
0 6620, [0 [o 0
0 1513 0 [0 [[
9 [677 of 2 [[[
10 [101.3 [) [[o 0 871099
1 [315.8) 0 [0 ° 6] 907180.5 900347 1585 .34
1 [8 [[[o ol 9257285 917934 1635.64
1 [0.8 0 [[[0] 944095.5 935719. 8375.8) 1661.47
14 0 0 [0 0 [0| 967347.5| 95827 9075.3] 1733.34
o 45.3 [[o 0 0] 1011107.5] 1001057, 10050 1825.62
) [[[[[0 1020739 1010379
0 [0 [0 o 0 1043641] 1032264,
[0 [3 [o 0 [1080768 1068307,
o 60.8) 0 [[0 o 1117611 1104315.5
[47l 0 [[0 [1170781] 1157519.8]
1 [3 [[[} [ol 1226389] 12130305}
2
3
4
1
32
33
34
3"
4
4
4
4

A I B | c | D | [| F | G I H 1 1 J M N Q
Pucks 2.0 (rcvam1) data for TW 2.1 Benchmark/4 runs August 1989/gathered by Steven Bellenot
cttime amitime am:eposts am: _|aminestart __lamnoc amnssave amnscom am:eposrs
4 3055.32) 414581 49687 446587 400527 7015 110094,
4 4 1659.74] 414581 467369. 438108.8 409178 701 9 5796
4 952.99] 461317.5) 15406. 461317.5 15406. 414581] 468270. 448100.8 424897 701 23507.5] 31330.9
4 69 bw* 455446.5 2055 455446.5 2055 4145795] 480718.5] 462213.5 Soam.m* 20552] 440328. 701 22189 615526.3] 20313
7 4 454.17 50175.8] 28202. 450175.8] 28202. 4145811 501058.3] 481483 370158 462427, 7015 19360] 604564.3 7392.5)
4 345.57] 450113 .3 33106.8] 450113.3 33106.8 414581 520825.8] 497765.8 370158 478720.3 70158 609860.5) 2425
9 4 287] _455807.3 4558073 40052 414581] 545227.8 517456 370158 496959 5 370158 2 630968 1174
10 4 249 56| 461407 461407, 46500.3) 414581] 5735798 540721 370158 5179598 370158] 656611.5
1 4 225.93 469825 469825 54892.3 414581] 602715.3] 564852.8 370158 539791.3 37015 5365.5] 6867253
1 4 205.3] 4745695 474969. 60367.5 414581 628246 585345.8 70158] 556930, 7015 28719 707649]
1 4 65.62] 4791733 479178. 4562.5 414581 642230, 594806.5] 70158 566470. 7015 86! ‘m_ 718445.8
14 4 74.73] 4866 o.m* 86680, 72098.5] 414581 669242, 616977.8 70158 586116. 7015 1165.5] 744984.3
1 5 4 66.12] 500253, 500253, 5643.5 414581 712337 652555 70158 8564 617805. 7015 5053.5] 787252.3)
1 4 5027 .\.l_ 502787. 88206.8| 414581] 723661. 660041.3 70158 8820 625545. 01 47 79851
4 510593, 510593. 96004 414581 75352 68261 70158 96004 644750 701 81 818499.
4 521205. 106624.5] 521205.8 106624.5] 414581 79102 713031, 70158 106624.5 671503, 701 41832.3] 85153
3 [4 534786 120205} 534786 120205 414581] 830145, 743995. 70158] 120205, 700269 5 701 44029.8] 888051.8
[70| 4 137.5] 561996, 147415.8] 5619968 14741 414581 893703 798904, 370158| 147415.8] 753255 370158 45953.3] 967523.8
1 75 4 135.95] 578697, 164097 mqwqu.mT 164097 414581 942017.5] 839869, 370158 164097] 791423.3 370158 48750] 1022442 8]
2
3 |Duplicate data for timing curve Duplicate data for speed curve| Seq. Sim. Time Calculated data for ERBO's curve
4 | Nodes Seconds Nodes 1673.57] Nodos ERBO's
3 3055.32 3] 0.58] 3 7642
4 1659.74 4 1.01 4 67950,
6 952.99 .7 € 77942,
8 692.49) 4 92056.
2 454.17] 12] . 11132
3 345.57] 6| 4.84] 6| 127607,
20} 287 20 5.83 20 14729
32 24 249.56 24 6.71 4 17056
33 28 225.93 F m* 7.41 8] 194694.8
34 32 205.3) 2 8.15 2] 2151878
36 185.62 36 9.02) 36| 224648 5]
40 174.73) 40 9.58 40| 246819.8
45 166.12] 4 m# 10.07] 45 282397
5 53 50 10.92] o] 289883.3
55| 144,42 m_ .59 5] 312457
4 60 37.75| 0 .15 o] 342873.5
4 65 134.8 m* .41 m* 373837,
4 70 137. 70| 12.17] 70 428746.
4 75 135.9 75] 12.31 75 469711,

S I '] v W X Y Z AA AB

__jamenegrs am:eposrr |lam:enegrr am:numer amnumds. am:comer am:comds am:cprobes___|am:chits AM'CMISSes

[*) 110094, [0 (‘] 0 Ol _1060744.5| 1052924, 7819.

("] 57967] () 9 0 [916134 911743, 4390,

0 31330. [0 0 g '] 862250.5 859047, 3203.

0 2 - 0 0 [43] 840235.5 83707 3156 5

0 7. .5 0) [(4 0 834065 830465, 3599.3

[} 242 mm 0} L] [} 0 (4] 838091 833710.8 4380.3

[1174.3 0 (*] 0 0 9 859517 854287 5 5229.5)
1] 325.8] ("]] 0 o] mm:wa..w._ 8750185 6118 1514 51
1 0 351.8 0 0 [¢] 0) 909334 9024975 omww.M* 1588.95)
1 0 21 0 9 0] o 927397 919600.5 77986.5] 1639.12]
1) 29.8 0) o (] [946311 93793 muﬂM 1668.42
1) 0 o (] 0 9 9698153.5 960079, 9073, 1734.58
1 0 28.9] o ("] 0 0l _1016168.5] 1006110. 10058, 1837.28
1 o 0 1] ("] 9 0] 1025979.5] 1015609. 10369. 1866.06
1] 8.8 0 0 (*] 9 0 1050432] 1035043. 11388, 1927.83]
1 0] 0 9] 9 o 1086431 1073955, 12475, Nod.\.wM*

] () 9 0) o o 1133372 1120062, 13309. 2118.7,

[[} [of [[} of 1221859.5] 1208566.5| 1329 2313.86)

o 19.5]] ("] (1] ("] ol 1274157.5| 1260783.8 13373, 2446.61

alals|-

0 or e
d il

FNINFS’S

