JET PROPULSION LABORATORY INTEROFFICE MEMORANDUM
SFB: 363-89-005
17 August 1989

TO: Time Warp Folks
FROM: Steven Bellenot

Why is Pucks Lazy?

The application/benchmark “Pucks” performs significantly better
using lazy cancellation than using aggressive cancellation. This memo
attempts to explain why. The reasons are partly that Pucks takes better
advantage of lazy cancellation than either STB88 or Warp Net and partly
that Pucks with aggressive cancellation is overloading the message passing
system in TWOS. Some conjectures as to why lazy cancellation works so
well on the Pucks simulation are given at the end. Our format is a large
number of figures (at the end) with (mostly) just a few words about each.

How Lazy?

' That Pucks under lazy was roughly twice as fast as Pucks under
aggressive on the 40 to 75 node range was documented in my second
memo on Cancellation Policies (JPL IOM SFB: 363-89-004). Table 1 shows
the relative ratio aggressive run time over lazy run time for two collection
of runs. The top row are from the memo cited above and the bottom row
were made after tuning the queueing parameters for aggressive
cancellation. Figure 12 contains the execution times for the bottom row of
Table 1 and Figure 13 shows this data as a speed-up curve. Lazy is twice
as fast as aggressive on 75 nodes, even after the parameters have been
tuned for the aggressive policy.

Number of Nodes 40 |45 |50 |55 |60 (65 |70 |75

ma = 2 /[rcvqg = 30 1.71{1.97(2.19]1.94]1.93{2.00{2.49]2.70

ma = 1 / rcvq =100 1.4911.59]1.62|1.52(1.56]1.62]1.84]1.98

Table 1. (the aggressive execution time with parameters given) divided by
(the lazy execution time with the parameters ma=2 rcvq = 30)

Tuning The Parameters

The parameters we varied were (ma) max_acks and (rcvq) the
receive queue length (also called (mna) max_neg_acks), also we varied the
radius of the pucks which is a simulation parameter. The baseline was with
ma=2, rcvq = 30 and radius = 6. This choice of ma and mna came from a
study of the behavior of aggressive cancellation on STB88. (See my first
memo on cancellation policies (JPL IOM SFB: 363-89-002).) We ran tests
with 70 nodes and 30 nodes (35 nodes for the radii test).

Max Acks

The first set of tests varied max_acks. In this version of TWOS on the
butterfly there are 64 buffers on each node for sending off-node messages.
Those buffers numbered less than max_acks are used for positive
messages and the others are used for negative messages and system
messages. When max_acks is small, an off-node positive message may
have to wait for a buffer to free before it is transmitted. The effect of a
small max_acks is to limit the number of positive messages in the FIFO
DualQueue. A small max_acks doesn’t limit negative messages.

The 70 node tests indicate that max_acks should be as small as
possible for the aggressive case (see Figure 1). Figure 1 also shows
max_acks had hardly any effect on the execution time for the lazy case.
(Actually for the lazy case, max_acks = 1 was slower than max_acks = 2.
‘Also max_acks = 4 might be slightly faster than max_acks = 2 in the lazy
case.) Figure 2 shows the number of negative messages sent for these runs.
Note that the run times are proportional to the number of anti-messages
sent for the aggressive case. The max_acks = 32 data point is missing for
aggressive since we didn’t obtain a successful run.

We checked the other end of our range with a 30 node test. Again
(see Figure 3) max_acks = 1 was the best for the aggressive case. The range
is not as great by the execution time again follows the number of anti-
messages sent (see Figure 4). The lazy case is the same as for 70 nodes.
Tests with max_acks larger than eight were not run on 30 nodes.

Receive Queue Length

The rcvq is the maximum number of messages which can be waiting
to be enqueued into the Time Warp queues. Each time through the main
loop, Time Warp reads everything off the DualQueue until this limit is
reached. In this version, but not TWOS 2.1 or TWOS 2.2, the receive queue

is in timestamped order. At least one message from the receive queue is
enqueued into the Time Warp queue. Messages from the receive queue are
enqueued into the Time Warp queues until there is a object with a strictly
smaller timestamp ready to run (or the receive queue is empty.) Note that
up to rcvq - 1 messages could be left in the receive queue when TWOS
starts running an object, and hence the next time through the main loop
Time Warp would dequeue at most one message off the DualQueue. (TWOS
currently puts anti-messages ahead of positive messages in the receive
queue.)

A large rcvq will tend to empty the FIFO DualQueue and order the
messages by the better Time Warp order. Unfortunately, the receive queue
compleat for memory with everything else. A large rcvqg on a small
number of nodes can cause memory exhaustion. A small rcvq can leave
more important messages on the DualQueue. If each node has one message
in transit to node A, then the length of the receive queue must be the
number of nodes minus one in order to always get the message furthest
behind. In practice, a much smaller number will do for the length of the
receive queue. However nodes can have several messages in transit to
node A.

The results of the 70 node tests for rcvq are rather boring (see
Figure 5.) It looks like the rcvq is not important at 70 nodes. (We will see
later that 100 is just too small when max_acks is 2.) For the lazy case, rcvq
= 30 is better than rcvq = 10, but rcvq = 50 might be slightly faster than
‘both. The results for the 30 node case (Figure 6) show that rcvg can be too
large for the aggressive case (at least with ma = 2 and a small number of
nodes), but for the aggressive case, the run times are decreasing with
increasing rcvq. Eventually these tests were re-run with max_acks set to 1.
The results (Figures 7 and 8) show a decreasing run time for aggressive
pucks as the length of the receive queue increases. For unimportant
reasons, there is a maximal limit of 100 on rcvq, which is the best for the
aggressive case. Clearly there are a lot longer receive queues for the
aggressive case, TWOS is not consuming the messages in the DualQueue fast
enough.

Puck Radius

The configuration file used for the test runs has 128 sectors and 128
pucks. It was suggested that perhaps there were not enough collusions in
this configuration of Pucks to be a good test of the lazy vs aggressive issue.
The effect of increasing the radius (a config file parameter) would be to
increase the number of collusions. It was thought that this would improve

the relative performance of aggressive vs lazy. The tests were run with ma
= 2 and rcvq = 30. Figure 9 (for 70 nodes) and Figure 10 (for 35 nodes)
show that aggressive gets worse as the radius increases. Figure 11 shows
the number of committed events and committed event messages for the
various radii. Some caution for the radius = 12 or 24 case is needed. The
puck must be told about all the sectors it starts in, otherwise it can get lost.
The configuration files for radius 12 and 24 didn't check for this. Also at
the beginning, each puck checks to see if it is completely on the board. If
part of the puck “sticks out”, the “puck” screams a message to standard
error. The radius = 24 case had a few of these screams and these standard
error messages add about 10 seconds to each run time.

Timing Runs

Thus ma = 1 and rcvq = 100 (and radius = 6) were used in our timing
runs. As Table 1 shows, this tuning of parameters did greatly aid the
aggressive run time of pucks. Figure 12 shows the run time data and
Figure 13 shows the data as a speed-up curve. (The sequential run time of
2299.01 seconds was taken from the 2.1 benchmarks which was a
(slightly?) different version of Pucks.) As before each data point is a
average of three runs, differences of a second or two are not significant.
Thus we have:

Conclusion 1: Pucks runs much faster with lazy cancellation than
" with aggressive cancellation.

Conclusion 2: Part of this difference is due the message system
being overloaded with aggressive cancellation.

Pucks is More Lazy than STB88 or Warp Net

Another way to check how lazy Pucks can be is to compare it to our
other benchmarks, namely STB88 and Warp Net. Table 2 contains the
sequential run time of these simulations and the number of committed
messages sent. We see that Warp Net sends far fewer messages. The
committed messages per second is nearly the same for Pucks and STBS8S,
but they reverse order between the sequential run and the 40 node runs.
(The 40 node times were done with lazy cancellation.)

Application seq-run-time | cemsgs| msg/sec| 40 node time |msg/sec
Pucks 2299 seconds | 416673] 181.24 | 194 seconds [2147.8
STB8S 3756 seconds | 603472] 160.67 | 228 seconds |2646.8
Warp Net 2381 seconds 45319 19.03 | 100 seconds 453.19

Table 2. Comparing applications

We also normalized the number of messages sent for each
application by expressing them as a ratio with the number of committed
event messages. Figure 14 shows lazy anti-message production for the
three applications. Warp Net and STB88 are roughly the same with Pucks
being around 50% higher than the other two. Figure 15 shows lazy unsent
messages, the ratio of “lazy hits”. Again STB88 and Warp Net are closer to
each other than to Pucks. Indeed Pucks is about twice the size of the other
two. Figure 16 shows aggressive anti-message production, here Pucks has
more than twice the ratio of negative messages sent than either STB88 or
Warp Net. (Note Warp Net is also more lazy than STB88 by this measure.)
Thus we have empirically shown:

Conclusion 3: Pucks takes better advantage of lazy cancellation
than does STB88 or Warp Net.

The Lazy Simulation features of Pucks

Just what feature of Pucks makes it so lazy? This section of the
memo is conjecture.

When two pucks are in the same sector at the same time, they will
not collide more often than they will collide. In this case if one of the pucks
is delayed, the other puck correctly races ahead. This kind of simulation
independence is a win for lazy cancellation. It was this idea which lead to
the radius test. By increasing the radius, it is more likely that the pucks
will collide. Unfortunately, also by increasing the radius it is more likely
that non-colliding pucks will share the same sector. We do not have the
data to determine which dominates.

Another way in which Pucks is lazy is the large number of message
“sinks”. Most messages do not cause more messages, the main exceptions
being the “change velocity” and “enter sector” messages for a sector. A

puck generally will enter at most one of the neighbors of its sector, and as
before, collisions between pucks is the exception and not the rule. If a new
trajectory message is wrong, most nearby objects will not go down wrong
paths.

A third way in which Pucks is lazy is the way in which it uses
cancellation. Even if puck A thinks it will collide with puck B at time now +
10.0, it will schedule a collision with puck C at time now + 20.0. The
collusion with puck B will cancel the collision with C. The new trajectory
message from B with which A schedules the collision for now + 10.0 must
arrive after now + 20.0 (and not now + 10.0) in order to generate incorrect
results. Thus events can arrive a bit out of order without incorrect work
being done.

What Next?

Two paths for further study suggest themselves. First Time Warp
could be changed to react faster to messages to remove the queuing
effects. It seems that this would require some serious re-thinking, receive
queue lengths of more than 100 are likely to kill performance. Second
Pucks could collect statistics to see if any of the conjectures above are true.

wasS oo oWy

1800
1600
1400
1200
1000
800
600
400
200

Execution times
Pucks 70 nodes
effect of max acks

m@@qmmm?m and max acks = 16
two runs ~ 1150sec no reverse msgs
& one run ~ 2550sec 100000 reverse msgs

] lazy
Bl aggressive

2 4 8 16 32
Max Acks

Figure 1

)

»oQ®onwno— 3>

~ 30 W

6000000

5000000

4000000

3000000

2000000

1000000

Negative Messages Sent
Pucks 70 nodes
effect of max acks

m@@ﬁmmm?m and maxacks = 16
two runs ~ 4.3M msgs
one run ~9.3M msgs

e

[1 1azy
Bl aggressive

8
Max Acks

Figure 2

e
X
,

r

’

w 0 >0 O 0 W

450 T
400
350
300
250
200 +
150
100

]
T

i
T

1
Ll

5

g8

e

e
Ry

M..W\% 2

A

eroans

A
L
\Pﬂ%&\\”

-

R

Execution times
Pucks 30 nodes
effect of max acks

L] 1azy |

aggressive

4 8 g
Aggressive max acks = 8
one run of 636 seconds
two runs terminated for lack of memory

Max Acks

Figure 3

w 0oQ M v o —~+3 >

—~ 3 O© U

600000

500000

400000

300000

200000

100000

SRS
-

o
55

Ll

Negative Mesages Sent
Pucks 30 nodes
effect of max acks

[1azy

aggressive

Max Acks

Figure 4

—dve

w Q30 0 0O W,

400
350
300
250
200
150
100

50

[l
L

Max

50 75
Receive Queue Length

Figure 5

Execution times
Pucks 70 nodes
effect rcvg length

lazy

aggressive

w oo o0 oW

400
350
300
250
200
150
100

50

Execution times
Pucks 30 nodes
effect rcvqg lentgh

] lazy

aggressive

aggressive failed all three runs
with rcvq len = 75 or 100 and

2 out of 3 for rcvqg len = 50
| A |

50

75 100

Max Receive Queue Length

Figure 6

W a0 00 W]

350 1

300 T

250 +

200 1

150 +

100 T

50 75
Max Receive Queue Length

Figure 7

Execution times
Pucks 70 nodes
effect rcvqg len

when max acks = 1

L1 1azy

1 aggressive

W aS o0 O WY

400 +

350

300 +

250 +

200 +

150

100

50

Execution times
Pucks 30 nodes
effect rcvqg len
when max acks = 1

10 30 50 75
Max Receive Queue Length

] 1azy

aggressive

1200

1000

800

600

400

200

]
T

Execution times
Pucks 70 nodes
effect of puck radius

2.67=all

.m.»mum_

1.95=a/l 2.15=a/l

2.72=a/l

[lazy
Bl aggressive

Puck Radius

Figure 9

w QO 30 O OO W

1200 1 2.34=a/l
L Execution times
1000 Pucks 35 nodes
effect of puck radius
800 +
L1 lazy
600 + 1.97=a/l |
. aggressive
1.74 99
400 + 1
1.40=a/l
200 t
0

Puck Radius

Figure 10

-~ 0O U 3 C Z

900000
800000
/700000
600000
500000
400000
300000
200000
100000

0

Simulation size: Pucks
cevents= committed events
committed event messages

cemsgs=

3 6 12
Puck Radius

Figure 11

] cemsgs

cevents

w o 30 0 0 Ww

Pucks execution times in seconds
lazy vs aggressive cancellation
aggressive tuned ma=1 rcvg=100

] 1azy aggressive
5001
418
400 364 131
300 e 287 278 261 277

245 238 234
200

100

153 144

25 30 35 40 45 50 55 60 65
Number of Nodes

Figure 12

18.00
16.00 -
14.00 -
12.00 -
10.00
8.00
6.00
4.00
2.00 -
0.00

~*- lazy

~°- aggressive

Speed Up Curve
Pucks with TWOS 2.1

20 25 30 35 4

0 45 50 565 60 65 70 75

Number of Nodes

Figure 13

¥ 8inbi-4

SOPON JO JaqunpN

8T°0

ce0

9¢’0

syond]

n

—
O
oo
00]

e

diem

uolle|jeouen Aze7
sebessa|y paliwwon/sabessa-lluy olley

Ratio Unsent Messages/Committed Messages
Lazy Cancellation

[pucks stb88 warp

1.20
1.00 1
0.80
0.60 1
0.40 1| 0.3:0.31
0.20 ;
0.00

1.08

0.98

0.71 0.75

Number of Nodes

Figure 15

Ratio Anti-Messages/Committed Messages
Aggressive Cancellation

L1 pucks stbss8 B warp

2501 2.26

1.99

2.00-

1.62

’ 1.49
1.50 1 1.30 1.43 1.39
1.15

1.00+ 0.87

0.501| 036945

0.00

60 65
Number of Nodes

Figure 16

