1

JET PROPULSION LABORATORY INTEROFFICE MEMORANDUM
SFB: 363-89-003
31 July 1989

TO: Time Warp Folks
FROM: Steven Bellenot
RE: The enclosed paper “Global Virtual Time Algorithms”

This paper is being submitted to the 1990 SCS Multiconference on
Distributed Simulation, at San Diego, CA, Jan 17-19, 1990. Much of the
paper is from my memo “The New GVT Algorithm” (JPL IOM 363-89-001),
but there is both new data (see Figure 3) and more theoretical background
(Token passing algorithms are reviewed).

Global Virtual Time Algorithms

Steven Bellenot
The Florida State University and
The Jet Propulsion Laboratory

Abstract

A new GVT (Global Virtual Time) Algorithm is given and
compared to known GVT algorithms. This algorithm is best possible
in the sense it has an overall run time of O(log N), a run time of O(71)
on each node and also it sends less than 4N messages. Performance
data for both the new and old GVT algorithms with TWOS (JPL’s
implementation of Time Warp) are included.

Introduction

Our setting is Time Warp (Jefferson 1985), an optimistic
synchronization method for distributed discrete event simulations.
Time Warp has all the different nodes (processors) each executing
simulation objects at (possibly) different virtual times (or
timestamps). These objects schedule events for each other by
sending messages. Unlike conservative methods, the Time Warp does
not block, on each node it executes the object with the earliest
timestamped on that node. Hence many nodes could be doing
incorrect work. Time Warp saves enough information so that
incorrect work can be rollbacked and redone. In theory, the entire
history of a simulation could be saved, but in practice the memory
used to save this history needs to be reclaimed.

The term Global Virtual Time (GVT) is used for two different
(but related) quantities in Time Warp. in the abstract, GVT is an
instantaneous parameter of a distributed simulation. It is calculated
by first (at least mentally) freezing all the nodes and messages in
transit. The value of GVT at that instant is the virtual time of the
object or message in transit which is furthest behind. This abstract
GVT represents the progress of the simulation. Everything with
timestamp before this abstract GVT is correct computation.
Everything after this abstract GVT is subject to change. Since this
abstract GVT is impossible to measure on the fly, GVT (estimated
GVT or GVT with no adjective) also refers to lower bound estimates

=d
Lied

of the abstract GVT. Knowledge of GVT is necessary for both garbage
collection of the past (fossil collection or the reclaiming of
memory), commitment of output and even for detecting when the
simulation has ended (Jefferson 1985). (GVT is also used in the
proof that simulations using Time Warp will eventually terminate,
indeed this proof just shows GVT always increases.)

Three reasons motivated considering GVT algorithms again.
First, the number of nodes (processing elements) available to run
with TWOS (Jefferson et al.1987), the Jet Propulsion Laboratory’s
implementation of Time Warp have increased. Hence the cost of non-
scaling algorithms becomes more important. Second, the main
platform for the TWOS development group had switched from the JPL
Mark 1ll Hypercube, which supported broadcasts, to the BBN Butterfly
Plus, which does not. Third, the old GVT algorithm was known to
cause long message delays during the collection phases even on the
Mark Iil (Bellenot and Di Loreto 1989).

In a sense, the speed of the GVT algorithm hasn’t been critical
to TWOS. The GVT interval in TWOS is a run time parameter which
determines the time between successive GVT calculations, the time
from the end of one GVT calculation to the start of the next one. The
run time of well-behaved simulations have shown no noticeable
changes as the GVT interval varied from two to eight seconds. (The
run time could suffer with smaller or larger times.) However, the
choice of the GVT algorithm does become important in the less well-
behaved cases as we shall see.

GVT Estimating Algorithms in General

We assume there are N nodes, numbered from 0 to N-1.
Estimated GVT uses real-time intervals instead of the single real-
time instant used for finding abstract GVT. For each node i/, let
[STARTj, STOPj]be an interval of real time. We further require that
the collection of these intervals [START], STOPjjhave at least one
point, call it RTM (for real-time moment), in common. Each node i
computes MVT; to be the minimum of the all the timestamps of
messages either in transit from node / at the real-time START/ or
send in the real-time interval [START;, STOPj]. On node i, PVTjis the
timestamp of the furthest behind object at real-time STOPj and
LVTjis the minimum of MVTjand PVT;. Finally, (estimated) GVT is

the minimum of all the LVTjs. Now on node i, MVTjis no bigger then
the minimum timestamp of all messages send from node j, which are
in transit at real-time RTM. The value of PVT; is measured at real-
time STOP;. Note PVTj can be strictly bigger than the timestamp of
the farthest behind object at real-time RTM, however any side-
effects of running objects during the real-time interval [RTM, STOP]]
are included in the MVT; measurement. (Thus the estimated GVT can
actually be larger than the abstract GVT at the real-time RTM.)

It is the receive time timestamp of messages in transit which
are minimized to obtain MVT;. The side effects of the arrival of a
message will happen at its receive time. However, in TWQOS, reverse
messages (messages returned to their senders) are used for flow
control. Reverse messages rollback their senders. Thus in TWOS we
minimize the send time timestamps of messages in transit.

The Old GVT Algorithm

The old GVT algorithm explicitly defined these real-time
intervals [START;, STOP|] by receipt of certain messages. The old
GVT algorithm ran in five phases:

(1) Node 0 broadcasts (sends the same message to all the
nodes) a GVT start message to all the nodes. On node |,
the receipt of a GVT start message is the real-time
START;].

(2) Each node responses to this GVT start message by
sending a GVT ack message to node 0. Node 0 receives
a GVT ack messages from all nodes. (We call this
operation a collection, it is the inverse operation to
broadcasting.) After node 0 has received a GVT ack
message from all the nodes, we are at the real-time
instant RTM.

(3) Node 0 broadcasts a GVT stop message to all the
nodes. On node i, the receipt of a GVT stop message is
the real-time STOP;.

(4) Node i responses to this GVT stop message by sending
a GVT Ivt message to node 0 which contains LVTi.
Node 0 receives a GVT Ivt messages from all nodes.
(This a second message collection.) After node 0 has
received a GVT Ivt message from all the nodes, then it
computes GVT by minimizing all the LVTjs.

(5) Node 0 broadcasts a GVT update message to all the
nodes. This message contains the new estimate of
GVT.
Note that for both the collections (2) and (4), node 0 must
sequentially receive a message from all N nodes, hence the run time
¥ of the old GVT algorithm is O(N).

The run time of broadcasts depends on the hardware support
and the network topology. The Mark Ill hypercube supported a
broadcast in which separate communication processors did all the
forwarding. For this hypercube, broadcasts had run time O(1) on each -
node and run time O(log N) overall. In a shared memory machine, like
the BBN Butterfly Plus, broadcasts can be done in O(7). However,
TWOS remains true to message passing origins and does not take
advantage of shared memory. Each broadcast on the butterfly
requires the sending node to "send" an integer to all other nodes
which has run time O(N). Thus 5N GVT type messages are received in
P the old GVT algorithm, and between 3N and 5N messages are sent.

It is possible to replace the broadcasts and the collections
with binary-tree-like forwarding. Instead of broadcasting to each
node, node 0 would sent to both node 7 and 2, and in general node i
would forward the message to nodes 2i+1 and 2i+2 (if these numbers
were less than N). A collection can be done in the reverse order and
computation can be distributed at the same time. In phase (4), node i
could take the estimates from nodes 2i+1 and 2i+2 and minimize it
with LVTj and pass this estimate on to node (i-1)/2 (if i > 0). Using
these binary-tree-like forwarding instead of broadcasts and
collections, the run time of the algorithm drops to O(log N). The new
GVT algorithm uses a variation of these ideas.

Token Passing GVT Algorithms

Token passing GVT algorithms have also been used. Before
describing the token algorithm, we look at a ring topology algorithm.
The ring topology algorithm works in three phases:

(1) Node 0 starts the GVT calculation and sends a GVT

start message to node 1. On node /, the receipt of a

GVT start message is the real-time START). Node i

then forwards the GVT start message to node

(i+1) mod N.

b i m - g . 8 o o mrn e f T MM R T A e SN PR AL S U INERTE SR sk A

(2) The real-time that node 0 has received its GVT start
messages from node N-1 is both the real time ATM and
the real-time STOPp. Node 0 sends a GVT Ivt message
containing LVTp to node 1. Each other node i receives
an GVT Ivt messages, the receipt is the real-time
STOP;. Node i minimizes LVT; with the estimates it
has received, and sends this new estimate to the node
(i+1) mod N. When node 0 has received its last GVT
lvt message, then node 0 has a new value for GVT.
(3) When node 0 has received its GVT Ivt message, then
node 0 has a new value for GVT.The new value of GVT
is send around the ring. Node / sends a GVT update
message to node (i+7) mod N.
This algorithm combines phases (1) and (2) of the old GVT algorithm
into phase (1) above, and it combines phases (3) and (4) of the old
GVT algorithm into phase (2) above. This algorithm has a run time of
O(1) on each node and O(N) run time overall, it sends 3N messages.

The token passing GVT algorithms are based on running all
three phases of the ring topology algorithm together. That is the
message (the token) being forwarded from ito (i+7) mod N contains
the new GVT update from the first run, the GVT Ivt estimate from
the second run and is the GVT start message for a third run. (This
algorithm is essentially the one described by (Preiss 1989).)

The New GVT Algorithm

The new GVT algorithm is similar to the old algorithm but it
requires a “Message Routing Graph” (see below) and the algorithm
works in just three phases: '

(1) Node 0 starts the GVT calculation and sends a GVT

start message to at most two other nodes. Each other

node receives at most two GVT start messages, after

having received all of its GVT start messages, all

nodes but the last sends a GVT start message to at

most two other nodes. Again, on each node the receipt

of a GVT start message is the real-time START;.

These messages travel the arcs in the message

routing graph in the forward direction.

(2) The real-time that the last node N-7 has received all
of its GVT start messages is the real-time STOPN-1,
and the real time RTM. Node N-1 sends a GVT Ivt

LEGEND

A B

Message Path
o—>® From A to B.
A Not a Message Path!

Node A is drawn
twice to better
show both *“trees”.

r
4

message containing LVTN-7 to at most two other

nodes. Each other node i receives at most two GVT Ivt

messages, the receipt is the real-time STOP;. Node i

minimizes LVT;j with the estimates it has received,

and sends this new estimate to at most two other

nodes. When node 0 has received its last GVT Ivt

message, then node 0 has a new value for GVT. These

messages travel the arcs in the message routing graph

in the backward direction.

(3) The binary-tree-like forwarding (see above) is used

(instead of a broadcast) to pass a GVT update message

to all the nodes. This message contains the new

estimate of GVT.
Like the ring topology algorithm, this algorithm combines phases (1)
and (2) of the old GVT algorithm into phase (1) above, and it
combines phases (3) and (4) of the old GVT algorithm into phase (2)
above. This algorithm runs in O(7) time on each node and run time of
O(log N) overall. It sends less than 4N messages. There is O(log N)
one time configuration cost on each node to construct the part of
“Message Routing Graph” local to that node.

The Message Routing Graph

The message routing graph is different for different values of
N. To aid the reader we have included both graphical representations
of these graphs for values of N less than 18 (Figure 1) and the code
each node executes to configure itself (Figure 2). The message
routing graph is basically two binary trees and some connecting
arcs. There are three cases to consider in constructing the message
graph. We consider the easiest case first. Suppose N = 2M so that N
is even, then the basic construction goes as follows. Nodes 0 through
M-1 form a binary tree with 0 at the root and the arcs pointed away
from the root. Nodes M through N-1 form a binary tree with N-T7 at
the root and the arcs pointed toward the root. Finally there is an arc
from node i on the first tree to node N-7-i on the second tree if node
i has no children. (See for example N = 14, 12, 6 in Figure 1.) If Nis
odd, then the middle node is considered part of both trees. (See for
example N = 15, 13, 11, 7, 5 in Figure 1.) Finally if the number of
nodes on the “bottom row” of each tree is less than half the number
which could fit on the bottom row, then both trees share all the
bottom row nodes. Note that in this case the “bottom row” appears
twice in the network in Figure 1. This repeating of nodes makes this

int numFrom, numTo, from(2], tol2],
int Out0, Outl, numArrive;

/* my node number */
int myNum;

/* total number of nodes */
int numNodes;

FUNCTION gvtcfg()

{
int Mid0, Midl, myInv, OutFrom;
int In0, Inl, InTo, pen0, penl;

Mid0 = (numNodes - 1)/2;
Midl = (mumNodes & O0x01)?
Mid0 : MidO + 1;

/* matching node on other tree */
myInv = numNodes - myNum - 1;

/* for binary tree with root 0 */
/* left child number */
out0 = 2 * myNum + 1;
/* right child number */
Outl = Out0 + 1
/* parent number */
OutFrom = (myNum - 1)/2;

/* for binary tree with root
nunNodes - 1 */
/* left child number */
In0 = 2 * myNum - numNodes;
/* right child number */
Inl = In0 - 1;
/* parent number */

InTo = (numNodes + myNum + 1)/2:

for (pe
penl
{
/* this is the only O(log N) part,
everything else is O(1) */
}
penl
penl

n0

2 pen0 + 1)

pen0/2 - 1;
nunNodes - pen0 ~-1;

if (penl <= 2 * pen0 + 3)
/* the two trees can share the
bottom row */

Mido
Midl
}

penl - 1;
pen0 + 1;

if (myNum = 0)
{ .

1; pen0O < Mid0 + 1;
*

numFrom = 0;
} .
else if (myNum <= MidO)
{

nunFrom = 1;
from{0] = OutFrom;
}
else if (Midl <= Inl)
{
numFrom = 2;
from[0] = In0;
from(l] = Inl;
}
else if (Midl == In0)
{
numFrom = 1;
from[0] = In0;
}
else
{
numFrom = 1;
from{0] = myInv;

}

if (myNum == numNodes - 1)

{ numTo = G;

;lse if (myNum >= Midl)

{ numTo
to (0]

%lse if (Mid0 >= Cutl)

1;
InTo;

numTo = 2;
to[0] = Out0;
to[l] = Outl:;
}
else if (MidO == OutO)
{
numTo = 1;
to[0] = OutO;
}
else
{
numTo = 1;
to[0] = myInv;

}

Figure 2. The configuration
code to make the local part
of the message routing graph.

e

case look more like the others. (See for example N = 17, 16, 10, 9, 8
in Figure 1.)

The gvtcfg routine (Figure 2) has run time O(log N), however
only computing the variable pen0 requires takes this long. Using log
functions this routine can run in O(1) time. The local information
needed from the message routing graph is stored in the variables
numFrom, numTo, from[2] and to[2] and a variable numArrive is used
to count the number of received messages. (The variables Out0 and
Out1 are used in the update routine.) We note for later use that we
always have numTo plus numFrom is bounded by three. The message
routing graph uses all the arcs once in each direction and the degree
of each node is no more than three and some are less than three, the
number of GVT start messages plus the number of GVT Ivt messages
is stricly less than 3N. Also there are N-7 GVT update messages.
Thus the new GVT algorithm uses less than 4N messages. Because of
the binary trees in the message routing graph, the longest path from
node 0 to node N-1is O(log N)..

GVT Calculation Time and Normal Performance

Our performance numbers are from running a preliminary
version of TWOS 2.1 on a Butterfly Plus, running the Chrysalis
operating system underneath the Time Warp system.

In both the old and new GVT algorithms the natural measure of
speed is the time between when node 0 starts a GVT calculation by
sending the first message, until the time that node 0 knows the new
estimate of GVT. We will call this time period the GVT calculation
time. In even well-behaved simulations this GVT calculation time
can vary widely (with TWOS 2.1 on the Butterfly). This is due to the
lack of interrupts, so that an executing objects are not pre-empted
for message arrivals. Messages must wait for running objects to
finish to be received. Thus most of are graphs are of average GVT
calculation times. However, the first and last GVT calculations of a
simulation are done when nothing else is executing. This minimum
GVT calculation time is graphed in Figure 3a. This graph clearly
shows the linear run time of the old algorithm and the logarithm run
time of the new algorithm.

To represent normal behavior we used the twq simulation.
(Twq was designed and wriiten by Mike Di Loreto.) The twg

mw O30 O 0’

Minimum GVT .Om_oc_:o: Times

160.00

- | oooonoooo
140.00 + e
.ooo,no
120.00 + e
00
.“ OO . oo T n..OﬁOOOOOO
o
80.00 + .%8%88
oo
60.00 + Onooooooo ® e 0.0 oo-oaoao:nco
40.00 1 noooooo \O,Q (0 :-no-o'oqok .o.oapoo-po o701 e
20.00 focglge®"
@
o
0.00 + " “ : " “ “ | |
0 10 20 30 40 50 60 70 80

Number of Nodes

Figure 3a Minimum GVT Calculation Times vs Number of Nodes

-*- New GVT
-o- Old GVT

.
{
H
¥
L
¢
1S
H
.

w o s o0 0 o0 nw

300 T

250

200 T

150 1

100 T

New vs Old GVT -- Average GVT calculation times
Fifo Queueing Model -- 200 servers 200 clients

€ U L{ ®. " ¢ o 0 %" ST®
.t) 0 €0 T g

Cqq0 8Cse e® gt® o 0e®

L ® ®

10 20 30 40 50 60 70 80
Number of Nodes

Figure 3b Average GVT Calculation times vs Number of Nodes

-*- New GVT
-°- Old GVT

O o> o0 O o w

600 1
500
400 -
300
200 -
100 1

Old GVT -- 200 vs 800 clients
Average GVT calculation times
Fifo Queueing Model -- 200 servers

OO Awnvo .00 o n“ (o)o]
©° o o'c”
<O :
c©
«© ¢
oowoo o @ o 006-0 o.o,o/ 0t
onommwoc. R O i Wl L O
iex

-*- Old GVT 200 Clients
-o- Old GVT 800 Clients

10 20 30 40 50 60 70 80

Number of Nodes

AR v

Figure 3c Increased Message Traffic and Old GVT Calculation Times

w a5 0 0 0w

220 7
2007
180 1
160
140 ¢
120 7
100 ¢
80t
60t
40 1

20 1o

New GVT -- 200 vs 800 clients
Average GVT calculation times
Fifo Queueing Model -- 200 servers

0
S\
0.0 OOO o
I
©LCo 0. g (P
~ rOLE0L=0 e e® e
o LGOS € T
o COles"
)nmmmmmOOmoou
-~ 0
0.CCo .
22 0
- L0
o -~
cccC
(%
\oo
L%
(]
)
Ke)
©

10 20 30 40 50 60 70
Number of Nodes

80

-o- New GVT 200 Clients
-o- New GVT 800 Clients

Figure 3d Increased Message Traffic and New GVT Calculation Times

simulation is a FIFO queueing model where the clients are messages
and the servers are Time Warp objects. Figure 3 shows GVT
calculation times for this simulation as N changes from 7 to 79.
Figure 3b graphs the old vs new GVT average calculation time when
there are 200 clients. Several features of Figure 3b are worth
observing. First, the initial slope of the linear growth of old GVT
calculation time is much steeper than that of Figure 3a. Second, the
average old GVT calculation time is near the minimum old GVT
calculation time for N = 79. Third, the new GVT curve still has its
logarithm shape but the average calculation time is about three
times longer than the minimum calculation time.

The most interesting feature of Figure 3b occurs at about 20
nodes. The old GVT calculation times stops growing linearly and
flattens out into a level graph with what seems to be a random
variation. First we consider the random pattern. One of the
advantages of twq is that it almost evenly spreads objects to nodes
at run time. All our runs had 200 servers with server i placed on
node i mod N. This means node 0 sometimes was overloaded with
objects relative to most other nodes. When N=66, node 0 had 4
objects but almost all others had 3 objects, whereas when N=67
node 0 and almost all nodes had 3 objects. Since node 0 is also
overused in the old GVT algorithm, this explains the drop in old
average GVT calculation time as N changes from 66 to 67. Similar
reasons apply to the changes from 49 to 50, 39 to 40 and 33 to 34.

The reason Figure 3b flattens out is due to the increased idle
time on each node. Twg was re-run with 800 clients and the average
‘GVT calculation times for the old algorithm changed (Figure 3c).
Again the initial steep linear slope appears, but this time it
dominates the graph to about 40 or 50 nodes. The 66, 67 and 49, 50
drops are still clear, but so is a linear increase between 50 and 66.
Figure 3d shows the increase from 200 to 800 clients has little
effect on the average new GVT calculation time.

Thus Figure 3 shows that the new GVT algorithm is more
robust. However the twq simulation is well-behaved, the run time of
executing twg with the new GVT algorithm vs the run time of
executing twq with the old GVT algorithm are the same. In well-
behaved simulations, GVT calculations don't need to be real fast. As
a guess, GVT calculation times of a couple or three seconds
shouldn't change the run time of twq for N < 80.

Performance Under Stress

The STB88 benchmark (Wieland et al.1989) would barely run
under TWOS 2.0 on 4 Butterfly nodes. Part of the reason for this poor
performance would turn out to be a lack of tuning of TWOS to the
Butterfly. It was during this period that the new GVT algorithm was
added to TWOS. In the face of these tuning problems is where the
new GVT algorithm really shined over the old algorithm. Figure 4
shows the story. The message priority fix has to do with the
treatment of system messages. TWOS 2.0 and 2.1 use a Chrysalis
FIFO queue to help with message sending. When a message is sent, an
integer which gives the address of the message is placed in this
queue. In 2.1 the FIFO order was fixed so that system messages like
GVT messages got jammed in the front of the queue, instead of FIFO
order. (TWOS 2.1 made a number of other improvements dealing with
messages delays which eventually made the run times of two GVT
methods about the same.) '

Figure 4a shows the difference in run time that the
responsiveness of the new GVT algorithm can make. The run times
under old GVT varied and were roughly twice that under the new GVT.
Figure 4d shows the average GVT calculation times. Figure 4d seems
to imply that the average GVT calculation time needs to be less than
a couple of seconds. (Both the old and new algorithms had some GVT
calculations which were over seven seconds.) Both Figure 4b and 4c
show that the old GVT runs are doing lots of extra work. Even after
the message priority was fixed, the old GVT algorithm send much
more negative and reverse messages than the new GVT algorithm.
However both the GVT calculation times and the run times are close
after the message priority fix.

Not only did the new GVT really out shined the old GVT in this
bad case. Careful inspection of Figure 3c, will show there is no data
for N=1 but there is data in Figure 3d for N=1. The old GVT algorithm
could not run twgq in the 800 client case on one node (it ran out of
memory) but the new GVT algorithm could.

More Performance

Figure 5 contains a histogram of GVT calculation times, old vs
new, for STB88 on 716 nodes. The run time of STB88 with the new

80000 4
4500 T - 70000 -
4000 1
60000 -+ :
3500 - M Flgure 4b.
S 3000 - Figure 4a. ® 50000 + Negative Messages Send
e Execution Times 8 STBES on 4 Nodes
C 2500 - STB88 on 4 Nodes “ 40000
o :
n 2000 1 9 30000
9 45004 .
s 20000 -
1000 ¢
500 16000 - _,.,
0 0
Old GVT New GVT Old GVT New GVT Old GVT New GVT Old GVT New GVT
Belore message prlority fix After message priority fix Belore message priority fix Alter message priority fix :
3000
180000 v i
2500
160000 1+ ’.> :
140000 7 ' 000 4 Figure 4d.
o 120000 4 Figure 4c. ! GVT Calculation Times :
Reverse Messages Send ! STB88 on 4 Nodes
” 100000 + STB88 on 4 Nodes “ 1500
2 80000+ c
8 ° 1000 -
® 600004 n
& d
000 4
40 8 500 -
20000 - _
ol " P, " o __
Old GVT New GVT old GVT New GVT Old GVT New GVT Oid GVT New GVT :
Before message priority fix Alter message priority fix Belore message priority fix Alter message priority Tix

Figure 4. Perlormance Under Stress ;

Histogram of GVT Calculation times
16 node runs of Stb88
(slower times omitted)

Old GVT 2 runs [1 New GVT 2runs

250 1
212 209
200 ¢t
1501
100 ¢ 792
501
o0 24 20 0 2 10 0 1
0 : t ' ! t t } 4
0 32 64 96 128 160 192 224 256 288

GVT Calculation time in milliseconds

Figure 5 Normal GVT calculation times

' ; e

GVT algorithm ran slightly faster than STB88 with the old GVT
algorithm for these four runs, but not even 1% faster. Perhaps this is
a rough estimate of normal difference of GVT calculations times
between the new and old GVT algorithms for modest-sized N.
Removing sequential features from a parallel program does give one
a measure of satisfaction. However, clearly the GVT algorithm
wasn’t limiting the speed of TWOS.

We close this paper with an interesting story. When the new
GVT algorithm was added for the first time, TWOS ran a 16 node
STB88 about 60 seconds faster, more than 10% faster than with
using the old GVT algorithm. However, the next day, when TWOS was
re-linked STB88 with the old GVT algorithm ran 710% faster than
with using the new GVT algorithm. Eventually, the difference was
traced to a change in an SCCS identifier string. An existing change
was SCCS-edited into the official code. The time of day field of the
SCCS string became one character longer. The C compiler, gave that
string two extra bytes and moved all variables after this string by
two bytes. These two bytes changed the Time Warp heap memory
(where all messages and states are allocated) from a number
divisible by four to one which wasn’t. The 68020 is much faster for
memory references which line up on four byte boundaries.
Sometimes initial data is too good to be true.

REFERENCES

Bellenot, S. and Di Loreto, M., 1989, “Tools for measuring the
performance and diagnosing the behavior of distributed
simulations using time warp.” In Distributed Simulation 1989-
- Proc SCS Winter Muiticonference, Vol. 21 No. 2, 145-150.

Jefferson, D., “Virtual Time.” 1985, ACM Transactions on
Programming Languages and Systems, Vol. 7, No. 3, 404-425.

Jefferson, D., Beckman, B., Wieland, F., Blume, L., Di Loreto, M.,
Hontalas, P., Laroche, P., Sturdevant, K., Tupman, J., Warren, A"
Wedel, J., Younger, H., and Bellenot, S.,1987, “Distributed
Simulation and The Time Warp Operating System.” In Proc 12th
SIGOPS--Symposium on Operating Systems Principles, 77-93.

Preiss, B., 1989, “The Yaddes distributed discrete event simulation
specification language and execution environments.” In

Distributed Simulation 1989-- Proc SCS Winter
Multiconference, Vol. 21 No. 2, 139-144.

Wieland, F., Hawley, L., Feinberg, A., Di Loreto, M., Blume, L., Reiher,
P., Beckman, B., Hontales, P., Bellenot, S., Jefferson, D., 1988,
“Distributed combat simulation and time warp: the model and
its performance.” In Distributed Simulation 1989-- Proc SCS
Winter Multiconference, Vol. 21 No. 2, 14-20.

Author’'s Addresses:

(Til 25 August 1989)
Mail Stop 510-202, JPL 4800 Oak Grove Dr., Pasadena, CA 91109
steve@sapphire.jpl.nasa.gov

Math Dept, Florida State Univ, Tallahassee, FL 32306
bellenot@gauss.math.fsu.edu

