JET PROPULSION LABORATORY INTEROFFICE MEMORANDUM
SFB: 363-89-002
20 July 1989

TO: Distribution
FROM: Steven Bellenot

SUBJECT: Performance Results: STB88 with different cancellation policies

INTRODUCTION:

The STB88 Benchmark was used to compare the three following
cancellation policies:

1. Jump Forward - an optimization of lazy cancellation.

2. Lazy - lazy cancellation without jump forward.

3. Aggressive - aggressive cancellation.
A special version of TWOS near version 2.1 was used to measure these run
times. Configuration files for STB88 were those used to run the 2.0
benchmarks, those being the only ones available. Runs were made on 44,
40, 28, 24, 20, 16, 12, 8 and 4 nodes. Other nodes > 28 were not run
because those 2.0 config files were not easily available. Generally, this
version is fair to all three cancellation policies. At the end of this paper we
will consider the remaining unfairness.

CONCLUSIONS:

1. The jump forward optimization is not!
2. Lazy is faster than aggressive on 16 or more nodes, but not by much.
3. There are parameters where lazy is solid but aggressive wobbles.

JUMP FORWARD:

What the jump forward optimization to lazy cancellation does is to
compare the new state with the old state (if there is one) at the end of
each event. If the two states are equal, then this object can jump ahead to
the next unprocessed message in the future. Jump forward was added to
TWOS when there were queries. Queries never change the state and hence
jump forward always works for “straggler” queries. Besides the cost of
comparing states, jump forward requires unmarking of input messages
when processed and careful remarking of messages on rollback. Jump
forward is the more complex in terms of code than lazy cancellation which

2

in turn is more complex than aggressive. Jump forward is currently in
TWOS 2.1 and has been in TWOS for over a year or so.

STB88 run times in seconds
lazy cancellation (without jump forward) vs
jump forward (with lazy cancellation)

] lazy jump forward

900830848
800t
700+
600 t
500t
400+t
300+
200+t
100 ¢

611622

441450

373382
327333 290294

228229 204206

wo3Jo0oo0ooWw

16 20 24 28 40 44
Number of Nodes

Figure 1.

The run times are graphed in Figure 1. Each data point is an average
of three runs so differences of one second are not significant. The 4 node
runs were not graphed but jump forward loses here too, 1659 seconds to
1632 seconds for lazy. Lazy is always faster than jump forward, but jump
forward gets closer to the run time of lazy as the number of nodes
increases. Perhaps this due to a greater amount of idle time per node as
the number of nodes increase. That is, jump forward makes good use of
time which would otherwise be idle in the lazy cancellation case. However,
it seems that jump forward is one of those “short cuts” which actually take
longer. As far as STB88 is concerned, jump forward should be removed
from TWOS.

LAZY vs AGGRESSIVE:

As expected, the run times STB88 under lazy or aggressive are
roughly the same with lazy the “winner” by a few percent. Figure 2 graphs
the run times, each data point is the average of three runs so differences of
one second are not significant. The 4 node runs were not graphed, but

3

aggressive was faster 1600 seconds to 1632 seconds for lazy. There is a
slight tend for lazy to improve over aggressive as the number of nodes
increases, but it is the early to tell if this is significant or not. A certain
amount of tuning of the queueing parameters was done to optimize the
aggressive run times on 40 and 44 nodes. STB88 would vote to keep lazy
cancellation at least as an option in TWOS.

STB88 run times in seconds
lazy cancellation (without jump forward) vs
aggressive cancellation

O 1azy aggres

800 ¢

5700 4
€600 +
%00 +
400 4
$300 ¢
s200 ¢+
100 ¢

611610

441444

73382
3 327361

290296

16 20 24 28
Number of Nodes

Figure 2.
AGGRESSIVE WOBBLES:

The most interesting feature of the lazy vs aggressive race happens
in the 40 and 44 node cases. This feature is the existence of queueing
parameters where the run time of aggressive could vary by as much as
31% while the run time of lazy seems rock solid. Aggressive ran 9% to 43%
slower than lazy in the 44 node case. This variation of run times is shown
in Figure 3. The queueing parameter which seem to have the most effect
was reducing max_acks from 4 to 2. Figure 4 shows run times for a “cutoff”
STB88 with different queueing parameters. Max_acks is the maximum
number of positive messages in transit per node. The version of TWOS
used does not limit negative messages by max_acks, however TWOS 2.1
may limit the number of both positive or negative messages in transit by
max_acks. The other parameter “mna” is the maximum length of the
receive queue. Each read would acquire at most mna messages off the FIFO

4

“dual queue”. The number of messages waiting in the dual queue could be
as large as 64 * num_of_nodes but only max_acks * num_of_nodes could

be positive. The runs in Figures 1 and 2 for nodes < 30 had ma = 4, mna =
10 and for nodes > 30 had ma = 2, mna = 30.

wa33o0oo0ooWw

[/ 3N e N~ RN o NN ¢ NI ¢))

STB88 run times in seconds
44 node runs
showing the spread of run times
lazy vs aggressive cancellation
ma=4mna=10

160
140+
1201
100+

aggressive lazy

Figure 3.

STB88 run times in seconds
40 nodes, cutoff time 20,000
aggressive cancellation
ma = max no of pos msg in transit/node
mna = max length of recv queue/node

167

96
57 59

¥ T T

ma=2 mna=10 ma=2 mna=30 ma=4 mna=10 ma=4 mna=30 ma=24 mna=30

Figure 4.

UNFAIRNESS:

The version of TWOS (in /usr/local/src/test_2.1) is the fastest
version on STB88 on 16 nodes. Code (basically a Chrysalis call) which was
required to prevent Fujimoto’s Lazy Buster from having run-away-
behavior was commented out. This function call added to the run time of
all three simulations (over 10 seconds on lazy on 16 nodes). TWOS 2.1 (in
Jusr/local/src/bbn_2.1) stops the Lazy Buster in a different way. On the
other hand, the non-limitation of max_acks for anti-messages in the test
version favors aggressive over the way it is done in TWOS 2.1. There are
other ways which the tested version differs from the official version, but it
is not clear that these differences favor lazy or aggressive. The receive
queue in test_2.1 is ordered differently than in TWOS 2.1. Also the time
which it last checks for an arriving message before running an object is
different in the two versions. Lazy cancellation requires the saving of two
copies of each message, perhaps aggressive cancellation would have two
copies for debugging purposes. Making aggressive a run-time switch
introduces 8 tests for “if (aggressive)” or “if (! aggressive)” into the code.
Commenting these run-time tests out (or in?) made no noticeable
difference in the run-time of STB88 on 16 nodes (under lazy). Since jump
forward and lazy cancellation have been a part of TWOS for so long there
might be other code in which the run time of aggressive is slowed down
unnecessarily. However, no such code is currently known.

10.0 Distribution

Time Warp and CTLS Distribution List
Steve Bellenot
Jay Braun

Mike deGyurky
Paul Fimnett
Richard Fujimoto
Hugh Henry

Milt Lavin

Al Loomis

Bob Miller
Martin Orton

Joe Provenzano
Al Silliman

John Spagnuolo
John Weidner

