JET PROPULSION LABORATORY INTEROFFICE MEMORANDUM
SFB: 363-89-001
31 May 1989

TO: Time Warp Folks
FROM: Steven Bellenot

‘The New GVT Algorithm

The new GVT algorithm is better distributed (scales better) and
sends fewer messages than the old GVT algorithm but it is more complex
and slightly less flexible. Initial performance data also seems to favor a
change to the new GVT algorithm. Let N be the number of executing nodes
(or processors). The new GVT algorithm has a run time of O(1) in each node
and overall run time of O(log N) vs a run time of O(N) for the old GVT -
algorithm (on node O and overall). The new GVT algorithm sends less than
4N messages vs the old GVT algorithm which sends 5N. The new GVT
algorithm is more complex in the sense that a message routing graph is
constructed at run time. Each node configures itself at gvtinit time (before
the simulation starts) and determines who it sends messages to and who it
receives messages from. (The configuration algorithm has a run time of
O(log N) on each node.) The new GVT algorithm is less flexible in the sense
that it requires the nodes to be (logically) numbered from O to N -1 and
only node O can start a GVT calculation. (Although not required by the old
GVT algorithm, these conditions have always been true for our Time Warp
implementation.)

The Message Routing Graph

The message routing graph is different for different values of N. To
aid the reader we have included both graphical representations of these
graphs for values of N less than 18 (Figure 1) and the code each node
executes to configure itself (Figure 2). The message routing graph is
basically two binary trees and some connecting arcs. There are three cases
to consider in constructing the message graph. We consider the easiest case
first. Suppose N = 2M so that N is even, then the basic construction goes as
follows. Nodes O through M -1 form a binary tree with O at the root and
the arcs pointed away from the root. Nodes M through N -1 form a
binary tree with N -1 at the root and the arcs pointed toward the root.
Finally there is an arc from node i on the first tree to node N-1-1i on
the second tree if node i has no children. (See for example N = 14, 12, 6 in
Figure 1.) If N is odd, then the middle node is considered part of both

LEGEND

A B
Message Path
—»® romAwB

A Not a Message Path!
Node A is drawn
twice to better

show both “trees”.

Figure 1. Message Routing Graphs for 17 and fewer nodes.

int numFrom, numTo, from{2]}, to[2],
int Out0, Outl, numArrive;

/* my node number */
int myNum;

/* total number of nodes */
int numNodes;

FUNCTION gvtcfg()

{
int MidO, Midl, myInv, OutFrom;
int In0, Inl, InTo, penO, penl;

Mid0 (numNodes - 1)/2;
Midl (numNodes & 0x01)?
Mid0 : MidO + 1;

/* matching node on other tree */
myInv = numNodes - myNum - 1;

/* for binary tree with root 0 */
. /* left child number */
OutQ = 2 * myNum + 1;
/* right child number */
Outl = OutO0 + 1;
/* parent number */
OutFrom = (myNum - 1)/2;

/* for binary tree with root
numNodes - 1 */
/* left child number */
In0 = 2 * myNum - numNodes;
/* right child number */
Inl = In0 - 1!
/* parent number */

InTo = (numNodes + myNum + 1)/2;:

n0
= pen0 + 1)

/* this is the only O(log N) part,
everything else is 0O(1) */

’

}
pen0 = pen0/2 - 1;
penl = numNodes - penQ -1;

if (penl <= 2 * pen0 + 3)
/* the two trees can share the
bottom row */
{
Mido
Midl
}

penl - 1;
pen0 + 1;

if (myNum == 0)

1; pen0 < Mid0 + 1;
*

numfFrom = 0;
}
else if (myNum <= Mid0)
{

numFrom = 1;

from[0] = OutFrom;

}
else if (Midl <= Inl)
{

numFrom = 2;
from{0] = In0;
from{l] = Inl;

}
else if (Midl == In0)

{

numFfrom = 1;
from{[0] = InO:

}

else

{
numFrom = 1;
from[0] = myInv;

}

if (myNum = numNodes - 1)

{ numTo = 0;

Llse if (myNum >= Midl)

{ numTo
to (0]

1;
InTo;

o

}
else if (Mid0 >= Outl)
{

nunTo = 2;
to[0] = CutO;
to{l] = Outl;
}
else if (Mid0 == Out0l)
{
numTo = 1;
to[0] = OutO;
}
else
{
numTo = 1;
to[0] = myInv;

}

Figure 2. The configuration
code to make the local part
of the message routing graph.

trees. (See for example N = 15, 13, 11, 7, 5 in Figure 1.) Finally if the
number of nodes on the “bottom row” of each tree is less than half the
number which could fit on the bottom row, then both trees share all the
bottom row nodes. (See for example N = 17, 16, 10, 9, 8 in Figure 1.)

The local information needed from the message routing graph is
stored in the variables numFrom, numTo, from[2] and to[2] and a variable
numArrive is used to count the number of received messages. (The
variables Out0 and Outl are used in the update routine.) We note for later
use that we always have numTo + numFrom <= 3.

The Algorithm'

A GVT calculation starts on node 0 with the interrupt routine
gvtinterrupt. Gvtinterrupt just calls gvtstart and then calls dispatch. All
nodes receive a call to gvtstart, all but node O by the receipt of a
- GVTSTART message.

The gvtstart routine first checks to see if this node has received all
its GVTSTART messages. (If numFrom equals two it needs both messages,
otherwise one is enough.) Next the gvtstart routine starts the minimizing of
the virtual times of messages in transit. Then if numTo is one or two,
gvtstart sends GVTSTART messages to the node to[0] and, if needed, to the
node to[1]. Finally, if the node is number N -1, then numTo is zero and at
this point all of the nodes have started minimizing virtual times of
messages in transit, so gvtstart calls the routine gvtlvt with the virtual
time parameter of POSINF + 1.

_ The gvtlvt routine uses the message routing graph in the opposite
direction. All nodes but N -1 call gvtlvt with the receipt of a GVTLVT
message. If numArrive is zero, the gvtlvt routine stops the message
minimizing on this node. Then gvtlvt takes the minimum of its old value of
vt with the parameter it is called with. Next gvtlvt checks to see if has
received all its GVTLVT messages. (If numTo equals two it needs both
messages, otherwise one is enough.) Then if numFrom is one or two, gvtlvt
sends GVTLVT messages (with its estimate of GVT) to the nodes from(0]
and from[l] if needed. Finally, if the node is number O, then numFrom is
zero and at this point node O has the new estimate of GVT, so gvtlvt calls
gvtupdate with the new GVT.

The gvtupdate routine sends GVTUPDATE messages with the new
GVT to the nodes OutO and Outl if these numbers are strictly less than N.
(This is a binary tree message routing graph using all the nodes with node

0 at the root and the arcs pointing away from the root.) Then gvtupdate
does those things that a node must do after receiving a new GVT.

Mathematical Analysis

Since the message routing graph uses all the arcs once in each
direction and the degree of each node is <= 3 and some are < 3, the number
of GVTSTART plus the number of GVTLVT messages is < 3N. Also there are
N -1 GVTUPDATE messages. Thus the new GVT algorithm uses < 4N
messages. Because of the binary trees in the message routing graph, the
longest path from node O to node N -1 is O(log N).

Code Location

The code for the new GVT algorithm is in gvt2.c, which could replace
gvt.c with version 2.1. (It is currently included in libtw.a in the directory
Just/local/stc/bbn_2.1.) The code has been tested on all number of nodes
from one to twenty. ~

Initial Performance Data

The performance data was done using various Time Warps all near
version 2.1. In each comparison, the only difference is that between gvt.c
and gvt2.c. However, Time Warp 2.1 evolved during this time and other
comparisons are suspect. The time difference between the interrupt on
node O till the time node O has the new GVT will be called a GVT
calculation time. Note that GVT calculation time is more a measure of
message delays than the run time of gvt code. Also note that the time to
spread the new GVT from node O to the rest of the nodes is not included in
the GVT calculation time. This interval also has nothing to do with the
timval command in the configuration file.

1. Stb88 16 nodes before message priority fix. (The run times were
roughly the same.) The configuration file was stb88.cfg.16.

GVT calculation times

file average |best 90% |worst 10% | worst times

gvt.c 423 sec |.272 sec |1.76 sec |7.14 sec 5.84 sec

gvt2.c 394 sec |.200 sec |2.14 sec |9.87 sec 5.92 sec

2. Stb88 4 nodes before message priority fix

stb88.cfg.16.

. The configuration file was

The usual stats

file run num |run time |[neg msgs |rev_msgs
gvt.c 1 4123.79 |[76087 163806
gvt.c 2 3703.50 [64632 130773
gvt2.c 1 1870.99 (4752 42
gvt2.c 2 1869.64 (4816 1

GVT calculation times
file run num |average |best 90% |worst 10%|worst time
gvt.c 1 2.89 sec |2.43 sec |7.00 sec |8.13 sec
gvt.c 2 2.48 sec [1.99 sec |6.90 sec |7.90 sec
gvt2.c 1 127 sec |.077 sec |.579 sec |8.41 sec
gvt2.c 2 127 sec |.077 sec |.576 sec |7.73 sec
3. Stb88 4 fix. The configuration file was

nodes after message priority
stb88.cfg.16. .

The usual stats

file run time |neg msgs [rev msgs
gvt.c 2074.65 [14813 8856
gvt2.c 1843.26 [4814 0
GVT calculation times
file average |best 90% [worst 10%|worst times
gvt.c 134 sec |.106 sec |[1.23 sec |1.58 sec 1.51 sec
gvt2.c 085 sec |.065 sec |.273 sec [1.03 sec 1.00 sec

4 Stb88 16 nodes after message priority fix. (The run times were near the
same.) The configuration file was stb88.cfg.16. (Figure 3 shows a histogram
of these values.)

GVT calculation times

file run num |average |best 90% |[worst 10%|worst time
gvt.c 1 248 sec |.189 sec |.776 sec |3.35 sec
gvt.c 2 263 sec |.188 sec |.957 sec |3.10 sec
gvt2.c 1 174 sec |.118 sec |.671 sec |2.09 sec
gvi2.c 2 174 sec |.117 sec |[.678 sec |1.66 sec

Histogram of GVT Calculation times
16 node runs of Stb88
(slower times omitted)

B gvtc2runs B gvt2.c 2runs

250 1

212 209
200 A
150 4
100 -
50 | 36
0 0 2 4 2 0 0 0 10 o 1
0 2420 = e 1o
0 32 64 96 128 160 182 224 256 288
GVT Calculation time in milliseconds
Figure 3. Histgram of GVT Calculation times.

Conclusions

The new GVT algorithm seems to perform better on as few as four
nodes, and since it scales better, it should do at least as well as the old GVT
algorithm on all number of nodes. However, this doesn’t mean the new
GVT will speed up the run time of all current simulations in all
configurations. But it should not slow any of them down.

TIME WARP LIST

B. BECKMAN
L. BLUME

M. DILORETO
A. FEINBERG
J. GIESELMAN
L. HAWLEY
P. HONTALAS
B. JACOBSON
D. JEFFERSON
B. MILLER

B. MOORE

G. PAINE

M. PRESLEY
P. REIHER

J. RUFFLES

]. TUPMAN
V. WARREN
J. WEDEL

F. WIELAND
H. YOUNGER

TIME WARP DISTRIBUTION

BECKMAN
BELLENOT
BLUME
DILORETO
FEINBERG
FUJIMOTO
GIESELMAN
HAWLEY
HONTALAS
JACOBSON
JEFFERSON
MILLER
MOORE
PAINE
PRESLEY
REIHER
RUFFLES
TUPMAN
WARREN
WEDEL
WIELAND
YOUNGER

