JET PROPULSION LABORATORY INTEROFFICE MEMORANDUM
SFB: 363-88-005
August 12, 1988
To: The Time Warp Team
Re: Following paper
From: Steven Bellenot
The following paper, which is about graphics but which

contains no graphics, might be considered my final report for this
summer. My e-mail address is bellenot@nu.cs.fsu.edu.

Tools for Measuring the Performance
and Diagnosing the Behavior of
Distributed Simulations using

Time Warp
Steven Bellenot Michael Di Loreto
Departments of Mathematics Jet Propulsion Laboratory,
and Computer Science, California Institute of Technology,
The Florida State University, 4800 Oak Grove Drive,
Tallahassee, FL 32306 Pasadena, CA 91109
and the Jet Propulsion
Laborator :
’ g 0ROV
(e T
Abstract >, W1 W

Like any new design, Time Warp (an operating system for
distributed simulation), needs tuning in order to obtain maximum
performance. We do not claim to have tuned Time Warp to this peak,
but we offer a collection of tools and observations we have found
useful in improving Time Warp's performance. We caution the reader
that we do not claim to present the latest in graphics nor the last
word in performance measuring tools. We hope that this
documentation of our experience will benefit others.

Time Warp has constantly proved to be a source of counter-
intuitive results. Many so called optimizations have actually caused
Time Warp to run slower or to even crash. We have changed an
application to send fewer messages only to have it run slower. We
have done queueing chores earlier and simulations run slower. (We
then tried doing them later, but it ran slower too.) Indeed, we can
still be surprized by the consequence of a change to Time Warp.
Clearly, some tools are required to determine what is happening.

aOur tools are either graphical or statistical. In both cases we
make/\log file of either all object executions or of all messages sent.
We can do this for short simulations (around 20 seconds on 32
nodes). With this complete log file, we can analyze the data in
several ways. Graphically presented, the large amount of data
(perhaps 70,000 messages or 180,000 execution pieces) can have a

S

chance of being understood. The graphic limitations naturally lead us
to some statistical tools.

The Time Warp Environment:

For this paper, Time Warp refers to a special purpose operating
system for running discrete event simulations on multi-processors.
Time Warp was built and is maintained by the Jet Propulsion
Laboratory for the Army Model Improvement Program (see [Jefferson
87]). To run on top of Time Warp, a simulation must be broken into
objects which schedule events for each other via messages. We will
call such a collection of objects an application. The Application
layer (in theory) is transparent to the number or kinds of computers
it runs on. Currently, the application objects are statically assigned
to nodes at run time, and hence knowledge of the application is used
to load balance the nodes. The simulation time, that is the time that
simulation events are scheduled is called virtual time in Time Warp.

By the Time Warp Layer, we mean the layer of abstraction
between the objects on the application level and the lower machine
dependent level. In practice, this lower level can be viewed as
message passing kernel which logically connects any two nodes.
Time Warp has been ported to a number of machines, a network of
Suns and a Butterfly, for examples, but results of this paper are
based on Time Warp running atop the Mercury message passing kernel
on one of the Jet Propulsion Laboratory's Mark 1l hypercubes with
32 nodes.

For the purpose of this paper, we may view the application as
sending positive messages, which may or may not be correct. Time
Warp will rollback an object which has gone down an incorrect
simulation path and Time Warp will send negative messages (often
called anti-messages) to cancel the effects of the incorrect positive
messages. Time Warp also has system messages of which the most
important for our purposes are those used to compute global virtual
time (also denoted by GVT).

We will talk about two applications. The important application
is ctls87, which is called STB87 in [Weiland 88]. Ctls87 is a
distributed combat simulation with 3 distinct phases and a
reasonable run time of around 20 seconds. The other application is
an artificial one called slooow. Slooow is a fully connected model
designed to give wrong answers when it is out of sync. Slooow

stresses the message passing system and slooow violates every
known principle of what a good Time Warp object should not do.
Slooow has large fan in and large fan out as well as a very high
communication to computation ratio. Moreover, slooow is time

driven and (at least in theory) completely parallel.

Graphic Tools

Since there are two kinds of time in a simulation, real time
and virtual time, it seems natural to plot graphs with the two times
on the different axes. The virtual time of an event is easy to
determine, however to obtain the absolute real time of events on
several nodes required some care (see synchronizing the clocks
below). The first graphic (fplot) was of execution (real) times of an
objects vs the virtual time at which they were running. The real
execution time of an object was graphed as an horizontal interval at
height given by the virtual time of the execution.

The second graphic (mplot and later m3plot) was for messages.
Each message was represented as a line from (real-send-time,
virtual-sent-time) to (real-receive-time, virtual-receive-time). A
Silicon Graphic's Iris Workstation was the target machine for the
graphics. We could use a wide range of colors for the different
objects, or just a couple of colors which show the difference
between messages and anti-messages or between good positive
messages from those which were later cancelled.

Both of the plotting programs had acquired lots of features. We
could zoom-in and zoom-out recursively. We could graph just what
was happening on a single node. (Or view the nodes one at time like a
movie.) We could view what just one object was doing. The graphic
could be spread across a number of pages. In any of these views we
could identify any line by pointing the mouse and clicking on the line.

M3plot would allow you to stack two or three simulations on
the same graph. The later simulation graphs would be shifted-up in
the virtual time direction to prevent overlap. M3plot also added a
third dimension to message plots. The third dimension was object
"number". It became possible to view the graph in perspective and
walk around in it or even walk inside the graph. Using the object
"number" in the third dimension worked for slooow, but was less
successful for ctls87. The ordering of the objects was first come,

first served. Perhaps an ordering by node number (which is how
slooow was ordered) would have been more successful for ctls87.

The third graphic (hc - for hypercircle) was designed to show
the inner workings of Mercury on the hypercube. The nodes of a
hypercube were positioned on a circle (in a gray code order). Each
communication channel between two nodes was represented by a line
connecting the corresponding two points on the circle. As a message
was sent, its path in the hypercube was translated in to a path on
the hypercircle which was highlighted (in green for positive
messages and blue for anti-messages). While a message was in
transit, the other messages which were also in transit at that time
were shown. Apparent channel conflicts were displayed in white.

The log file had to be created while the simulation was
running. The log entries were stored in RAM and put into a single file
after the execution of the application was over. These files are quite
large, a typical simulation which runs about 20 seconds could
produce about 70,000 messages or 180,000 execution pieces. Each
execution log entry requires at least one object name, one virtual
time and two real times. The message log entries required twice
that space. (Messages were given four real-time stamps: 1. When the
message was created by the application. 2. When the message was
given to Mercury to send to another node. 3. When Mercury on the
receiving node got the message. 4. When the Time Warp layer
enqueued the message.) The time needed to read the output file was
long. A program that encoded this information into binary file was
used to decrease the set-up time of the graphics programs.

Time intervals

The graphic programs greatly increased our interest in delta
time intervals as opposed to total time. At first, the largest delays
were produced by a race condition in the Mercury kernel. This race
condition was known by the people maintaining Mercury. They were
using spin locks to determine the direction of the bidirectional
channels. Two spinning nodes would backup traffic on the whole
cube. Since the nodes are all on different clocks, eventually the
spins would stop being in sync. The code now carefully spins at
different speeds on different nodes.

We made a number of tests to check this Mercury fix. To decide
if gaps were Mercury gaps, we had to identify the operations in the

Time Warp layer which required large time investments each time
they were called. All of these Time Warp operations used a small
total time investment compared to the total run time of the
application. The graphics plots were still showing time periods
where nothing was being done. Two time periods were in Time Warp
and they were on the order of 50 - 100 milliseconds. One was
garbage collection and the other was a printf from node 0 to the host
computer. (Communication with the outside world from a hypercube
is much slower than inner-node communication.) Garbage collection
is done more or less at the same time by all the nodes.

Getting the clocks in sync (see below) and trying to measure
the performance on Mercury became important. We designed hc
(hypercircle) to show the channel use between nodes and the amount
of conflict for the use of these channels. And at first glance, it
looked like there was a lot of conflict. However, Mercury wasn't the
problem.

Mercury Performance

Using the statistical tools below we found that most messages
were being transferred by Mercury in less than than two
milliseconds. Moreover, the distance or number of hops the message
had to travel was much less important than message size in
determining message transit time while in Mercury. There were a
handful of messages taking up to a dozen milliseconds to travel
through Mercury. However, it is possible that all of these were
behind a GVT collection.

Time Warp does not use any special knowledge of the topology
of the hypercube. While computing a new GVT, node 0 requests a
message from all other nodes at once. This influx of messages from
all nodes to node 0 is what we call a GVT collection. Mercury,
because of the hypercube topology, will eventually send half these
messages through the bottleneck channel connecting node 0 and
node 1. Sixteen messages through the same channel in a dozen
milliseconds doesn't seem out of line since the average message
time is slightly over a millisecond. We do know better algorithms
for these GVT collections on the hypercube, but GVT calculations
only happen once each three to five seconds.

Communication and Queueing

Mercury does have a limitation. It runs in constant space. Too
many messages (around 500) in Mercury's receive queue will cause
Mercury to fail. To prevent overflowing the receive queues, the Time
Warp layer most restrain itself. For reasons used in computing GVT,
Time Warp on the receiving node sends back an acknowledgement to
the transmitting node for each message it receives. Time Warp
limits the number of transmitted messages for which have not been
acknowledged. If this limit (max_acks) is x, and there are y nodes,
then at most (y - 1) * x messages can be waiting on any node.
Common values of x range from 2 to 20 and on the current
hypercubes y is 32. Interestingly enough this limit is more
important after the simulation has completed. After the simulation
all the nodes dump their statistics to node 0.

If max_acks is high enough (near twenty) then almost all of

the message transit time is spent between time stamps 3 and 4
above. Most messages spent most of their time in Mercury's receive
queue. When max_acks is two, many messages spent some time
between time stamps 1 and 2, but most of the time is still spent in
the Mercury receive queues. For both ctis87 and slooow the receive
queues never exceed 25 messages. But there are other applications
which would overload this queues if not restrained.

Statistical Tools

We made use of histograms or frequency distributions to
analyze the message and execution logs. Our data showed exponential
distributions as one might expect with all the queueing of the
application messages. Hence our histogram maker was designed to
keep track of the messages with the largest delays. We found the
longest delay times were much larger than expected. Time Warp was
never designed to run in real time, however, some of these delays
were excessive. The longest delay for a message (call it "M") in one
run of ctls87 was 385 milliseconds. When message "M" arrived, there
were no other messages waiting to be consumed on the receiving
node. The Time Warp layer was "zipping ahead" while the message
"M" waited 383 milliseconds. An object, red_div22, had sent lots of
messages (64 of them) to itself, and at this point all these
messages seemed incorrect. However, "M" was a message for
red_div22, and had message "M" arrived a couple of milliseconds
earlier, the Time Warp layer would not have "zipped ahead" more

than five of the 64 messages. Identifying and reducing these delays
has become one of our preformance goals.

Slooow

The application slooow is usually run with one slooow object
per node. At each virtual time, each slooow object counts the number
of messages it has and then sends that number to every other slooow
object. However, each slooow object has the heart of a civil servant,
and it sends muitiple copies to each other slooow object. If a slooow
object starts early, it will have too few messages and send the
wrong number to everyone. If the slooow object is the last to finish,
then it will cause the others to rollback. Thus these objects see-
saw back and forth between being ahead and being behind.

Slooow is interesting in that its run time is not constant. In
Time Warp version 1.09, run times of slooow were wildly erratic. It
could even run slooower on 32 nodes than it did on one node. (The
range on 32 node runs varied from 5 to 70 seconds.) Time Warp
version 1.10 tamed slooow to be only mildly erratic. For example,
certain run times under Time Warp 1.10 could range from 18 to 25 . (
seconds. (Mo A beheeue 1,09 A 10T padat siy Ltefe. peols

Graphic displays of good run of slooow compared to bad runs of
slooow didn't show any difference other than the run time. It was
like the bad run was just a bit unlucky. Somehow critical measures
arrived a bit late in the bad runs as compared to the good runs.

The m3plot which colored the positive messages green and the
negative messages red provided the key to completely taming
slooow. The max_ack parameter was slowing the anti-messages so
much that green lines were vertical but the red lines were in the
form of a cone. By using a different and much higher limit on the
number of unacknowledged negative messages, the run time of
slooow dropped down to a consistent 11 seconds.

Synchronizing the Clocks

Each node of the Mark lll hypercube has a two microsecond
countdown counter. These could be all started at once by a global
interrupt. There were two problems about keeping time with these
counters. Each was driven by a different clock cycle which could
differ by as much as 50 tics per second. Although the counters could

4
be read on the fly, w could still be in progress if the counter
wasn't stopped. Trying to adjust for the time stopped (about 2 tics
per reading) was not accurate enough. The solution was to read the
counters twice in succession, if borrowing was in progress than the
second time would be larger than the first, otherwise we had the
correct time. To adjust for the different clock cycles, we used a
timing run to determine the number of ticks per second on each node.
Thus we easily obtained better than millisecond accuracy on runs of
twenty to thirty seconds.

Conclusions

It is difficult to overrate the impact of graphics. Time Warp
allows the simulation to go down wrong paths. We can get a idea of
how many and how far these incorrect paths are executed. The
graphs show the bottlenecks and the objects that have run off in the
future. Sometimes the graphs provide a sort of negative information.
For example, the slooow graphs showed that the slooow simulation
never run away with itself, all the objects were near the same time.
A better example of the negative information was that the
difference between a good run and a bad run of slooow was only the
length of the graph. This was another reason to make a study of the
delay times.

Graphs easily show things which would be difficult to discribe
with words. Indeed, the histogram program was designed so that its
output could be graphed with Microsoft's Excel. The histogram
program attempted to give near a 100 lines of output. We reduced
50K messages to a histogram of 100 lines and then graphed those
lines.

Finally, and perhaps we should have known from the beginning,
the performance of distributed simulations depends on the queueing P,?
delays. Long delays can make the whole simulation wait. However,
there are still things about Time Warp behavior we do not
understand.

Acknowledgements
We would like to acknowledge the help and encouragement of

the Time Warp team and others, including Brian Beckman, Leo Blume,
Maria Ebling, Phil Hontalas, David Jefferson, Roger Lee, Garry Paine,

Matthew Presley, Justin Magaram, Peter Reiher, Joe Ruffles, Jack
Tupman, John Wedel, Fred Wieland and Herb Younger.

References

[Jefferson 87] Jefferson, David, et al., "Distributed Simulation
and the Time Warp Operating System." ACM
Proceedings of the Symposium on Operating System
Principles, (November 1987). J+4—93,

[Wieland 88] Wieland, Frederick, Lawrence Hawley and Abe
Feinberg, "Implementing a Distributed Combat
Simulation on the Time Warp Operating System."

Proceedings of the Third Hypercube Conference, (In
Press).

v of "—Z’WC/ C m\w&u&/p»a O I[JZ&WW/C&J/@L
Concune. (py, @,QL o, O @Wp//%}u

bl 2 126q — 1276

g Z %ﬁ/c% (% 7L<
Lt Wt O}@&ﬁ)\%z e © e
Wbl) 3 -

