JET PROPULSION LABORATORY INTEROFFICE MEMORANDUM
SFB: 363-87-005

AUGUST 12, 1987

COUNTEREXAMPLES
Steve Bellenot

This memo could also be titled “failures” in that the examples
below have shown that certain policies fail. I list these failures here
so that if anyone asks “Have you tried ... ?” You can answer “No, but
we know it won’t work because of ...”

Another way of viewing these examples is that they show that
simulations can be schizoid. That is simulations can have two or more
natures which work against each other.

A NODE WHICH IS BOTH FARTHEST AHEAD AND FURTHEST BEHIND.

This was observed on node 0 while running Commol2 using
commol2b.cfg (see my IOM 363-87-003). Node O was farthest ahead
in that it was running objects with LVT over 400 (self-propelled
message generators). However, node 0 was also the furthest behind
in that there were objects (commo objects) that were blocked
awaiting query replies at LVT around 10.

In particular, this shows that you can’t just stop running
objects when there is little free memory. Even on nodes which have
lot’s of self-propelled objects greedily consuming all of your memory,
this could be the node furthest behind. Thus GVT will not advance,
no memory will be garbage collected, and the simulation will hang.

It turns out that this node has the least to do. Indeed, given
enough memory, the message generators quickly run to the end of
the simulation. These generators get rolled back, but they “resend”
the same messages. This is the node with the most calls to set null,
the routine which TW tells the Tester it has no objects to run.



LIMITING THE NUMBER OF SAVED STATES PER OBJECT.

Trying to synchronize by limiting the number of saved states
per object can work. But it could slow you down a lot. Commol4 is
the example this time. Since in Commol4 almost every object has an
event at almost every time, GVT can only advance x virtual time
units, where x is the number of saved states permitted.

Making x small enough to synchronize the simulation while
GVT < 250, will greatly slow you down when GVT > 250 where the
simulation moves much faster. When GVT < 250, each GVT update
only increases GVT by at most 3 on the Suns and by at most 11 on 32
hypercube nodes. Thus making x small has little effect on the rate
GVT increases while GVT < 250. However, when GVT > 250, some GVT
updates increase GVT by 50 or more. Thus some objects can need 50
or more saved states so that GVT can make these big increases in one
GVT interval. If x were 5, it might take 10 GVT intervals to get GVT
to increase by 50, a waste of 90%. On the otherhand, making x large
doesn't synchronize the simulation.

AN INPUT BUNDLE CAN HAVE ONLY QUERY REPLY MESSAGES.

A “bundle zap” in Commol2 produced an input bundle (the
collection of messages for one object with a given receive time, say
RT) consisting of three query reply messages. The query messages
which caused these query replies and an event message were in the
output bundle with send time RT. The event message (with receive
time RT) which caused all this activity was later annihilated.

This shows some care is needed at go_forward time. (Or we
could get rid of query messages.) There is a science fiction story
called “by his bootstraps” which comes to mind.



