JET PROPULSION LABORATORY INTEROFFICE MEMORANDUM
SFB: 363-87-001

JULY 22, 1987

NOTES ON IMPLEMENTING AND DEBUGGING MESSAGE SENDBACK
Steve Bellenot

These notes document the problems that were noticed while
getting message sendback to work. Of course, from the begining there
was code which attempted to handle reverse messages, and many
people helped with the debugging.

1. The GVT window:

Perhaps the biggest surprize was that while GVT is being
calculated, there is a period of time that reverse messages must have
sendtimes greater than LVT. Indeed, between the time gvtlvt is
computed and gvtupdate updates the GVT, each node requests
memory at least once. Suppose memory is low and a message to
sendback is chosen which has sendtime greater than the old GVT, but
not greater than the new soon-to-be-GVT. The message could arrive
on another node after that node has done gvtupdate. Thus we could
have a rollback to a time before the new GVT. A solution is not to
send messages with sendtimes less than the LVT (determined at
gvtlvt) between the times of gvtlvt and gvtupdate.

2. Pointers dangle everywhere:

There are (at least) two new ways a pointer can dangle with
message sentback. Now messages in the output queues can be
annihilated and messages in the input queues can be reversed,
dequeued and sentback.

First it was co, the "current output pointer” of each ocb. If the
message pointed to by co was annihilated, co couldn't just be made
NULL like the way ci (current input) becomes NULL. Rollback makes
no assumptions on ci, but assumes that if there is output at this "old
time" then co points to it. Because of queries (at least), co could be
pointing anywhere in the current output bundle. Thus undangling co
requires you to "look both ways".

Next it was a local variable f = find (...), followed by a m_create,
and concluding with a 1_insert(f, ...). The call to m_create could pick f
to sendback and f would no longer be in any queue. (Mike found this

one. By never picking anything but an event message to sendback
with sendtime > the timestamp of the memory request, I didn't see
this error.)

3. New_infinite loops:
I assumed that negative messages were never sentback. Thus if

an arriving reverse positive message didn't annihilate, it was
unreversed and sent forward. However since anti-messages were
sent via the MI call sndmsg, on-node reverse messages could bounce
back and forth forever. (It was repeatedly picked as the best
message to sendback. It was dequeued and given to deliver, but
since it didn't annihilate with anything in the output queue, we re-
enqueued it back it the input queue. Hence a long no-op.) But there
still wasn't enough memory so we found the same message to sent
back again.

This problem got me to uncouple enqueuing with rollingback. A
new runstat called RDY_2_ROLL was created and which allowed
cancel_omsgs to once again call deliver. This ended up being a much
bigger job than it first seemed. The debugging routines check_ocb,
and the dangle checks for ci and co date from this period.

Interestingly enough, queries caused a problem here, a special
case was required when an input bundle consisted entirely of query
reply messages.

4. Stack garbage:
When running low on memory, states are not always allocated.

When there isn't a saved state at each event, the number svt < lvt is
possible and hence stack garbage becomes a problem. An attempt
was made to rid ourselves of this problem once and for all. No output
messages were made or cancelled for times when svt < lvt. (After all
we did it right the last time or lvt would be equal to svt.) However
queries required more work since co points to the current query, so
we can figure out which query reply to read. Finding the correct
query reply seems impossible in general(see "the never ending stack
garbage problem"), but sender alone is enough for Commo*.

